Linux系统PCB源码的阅读与分析

1、PCB介绍:
PCB的意思是进程控制块,在Linux下的PCB就叫tast_strcut结构体。这个结构体包含了一个进程所需的所有信息。它定义在linux-2.6.38.8/include/linux/sched.h文件中。
进程控制块是操作系统核心中一种数据结构,主要表示进程状态。其作用是使一个在多道程序环境下不能独立运行的程序(含数据),成为一个能独立运行的基本单位或与其它进程并发执行的进程。 PCB通常是系统内存占用区中的一个连续存区,它存放着操作系统用于描述进程情况及控制进程运行所需的全部信息,它使一个在多道程序环境下不能独立运行的程序成为一个能独立运行的基本单位或一个能与其他进程并发执行的进程。下面我们先列出一些Linux下的PCB的总体概括:

  1. 进程标识符
    作用: 用于唯一地标识一个进程
    进程本身:外标识、内部标识
    家族信息:父进程、子进程信息
  2. 处理机状态
    处理机状态信息也称为处理机的上下文(Context),主要是由处理机的各种寄存器中的内容组成的。也就是中断现场的保留区,当进程被切换时,处理机状态信息必须都保存在相应的PCB中,以便该进程在重新执行时能再从断点继续执行。
  3. 进程调度信息
    在OS进行调度时,必须了解进程的状态以及有关进程调度的信息。这些信息包括:
    ① 进程状态
    就绪、执行、阻塞等,是进程调度和对换的依据
    ② 进程优先级
    是分配CPU的重要依据
    ③ 其它信息
    比如进程已等待CPU的时间总和、已执行的时间总和等
    ④ 事件
    指的是阻塞原因(即程序由执行状态变为阻塞状态的原因)
  4. 进程控制信息
    ① 程序和数据的首地址
    调度到该进程的时候,可以找到其程序和数据
    ② 进程同步和通信机制
    如消息队列指针、信号量等,以后的进程同步中会学到
    ③ 资源清单
    列出了该进程在运行期间所需的全部资源(CPU除外),另外还有一张该进程已分配的资源清单
    ④ 链接指针
    给出了该进程(PCB)所在队列中下一个进程的PCB首地址,跟链表一样
    Linux系统的所有进程控制块组织成结构数组形式。早期的Linux版本是多可同时运行进程的个数由NR_TASK(缺省值为512)规定,NR_TASK即为PCB结果数组的长度。近期版本中的PCB组成一个环形结构,系统中实际存在的进程数由其定义的全局变量nr_task来动态记录。结构数组:struct task_struct *task[NR_TASK]={&init_task}来记录指向各PCB的指针,该指针数组定义于/kernel/sched.c中。
    在创建一个新进程时,系统在内存中申请一个空的task_struct区,即空闲PCB块,并填入所需信息。同时将指向该结构的指针填入到task[]数组中。当前处于运行状态进程的PCB用指针数组current_set[]来指出。这是因为Linux支持多处理机系统,系统内可能存在多个同时运行的进程,故current_set定义成指针数组。

2、Linux系统的PCB的源码如下所示:

struct task_struct {
volatile long state;  //表示进程的当前状态,说明了该进程是否可以执行,还是可中断等信息,状态如下图所示:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20201208213953719.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDYwMjUwNQ==,size_16,color_FFFFFF,t_70)

unsigned long flags;  //Flage 是进程号,在调用fork()时给出
int sigpending;   //进程上是否有待处理的信号
mm_segment_taddr_limit; //进程地址空间,区分内核进程与普通进程在内存存放的位置不同
                       //0-0xBFFFFFFF foruser-thead
                       //0-0xFFFFFFFF forkernel-thread
//调度标志,表示该进程是否需要重新调度,若非0,则当从内核态返回到用户态,会发生调度
Volatile long need_resched;
int lock_depth;  //锁深度
long nice;       //进程的基本时间片
//进程的调度策略,有三种实时进程:SCHED_FIFO,SCHED_RR,分时进程:SCHED_OTHER
unsigned long policy;   //该进程的进程调度策略,可以通过系统调用sys_sched_setscheduler()更改(见kernel/sched.c)。调度策略有:
****SCHED_OTHER  非实时进程,基于优先权的轮转法(round robin)。
****SCHED_FIFO    实时进程,用先进先出算法。
****SCHED_RR      实时进程,用基于优先权的轮转法
struct mm_struct *mm; //进程内存管理信息
int processor;
//若进程不在任何CPU上运行, cpus_runnable 的值是0,否则是1这个值在运行队列被锁时更新
unsigned long cpus_runnable, cpus_allowed;
struct list_head run_list; //指向运行队列的指针
unsigned long sleep_time;  //进程的睡眠时间
//用于将系统中所有的进程连成一个双向循环链表,其根是init_task
struct task_struct *next_task, *prev_task;
struct mm_struct *active_mm;
struct list_headlocal_pages;       //指向本地页面      
unsigned int allocation_order, nr_local_pages;
struct linux_binfmt *binfmt;  //进程所运行的可执行文件的格式
int exit_code, exit_signal;
int pdeath_signal;    //父进程终止是向子进程发送的信号
unsigned long personality;
//Linux可以运行由其他UNIX操作系统生成的符合iBCS2标准的程序
intdid_exec:1; 
pid_t pid;    //进程标识符,用来代表一个进程
pid_t pgrp;   //进程组标识,表示进程所属的进程组
pid_t tty_old_pgrp;  //进程控制终端所在的组标识
pid_t session;  //进程的会话标识
pid_t tgid;
int leader;     //表示进程是否为会话主管
struct task_struct *p_opptr,*p_pptr,*p_cptr,*p_ysptr,*p_osptr;
struct list_head thread_group;  //线程链表
struct task_struct *pidhash_next; //用于将进程链入HASH表
struct task_struct **pidhash_pprev;
wait_queue_head_t wait_chldexit;  //供wait4()使用
struct completion*vfork_done;  //供vfork()使用
unsigned long rt_priority; //实时优先级,用它计算实时进程调度时的weight值
 
//it_real_value,it_real_incr用于REAL定时器,单位为jiffies,系统根据it_real_value
//设置定时器的第一个终止时间.在定时器到期时,向进程发送SIGALRM信号,同时根据
//it_real_incr重置终止时间,it_prof_value,it_prof_incr用于Profile定时器,单位为jiffies。
//当进程运行时,不管在何种状态下,每个tick都使it_prof_value值减一,当减到0时,向进程发送
//信号SIGPROF,并根据it_prof_incr重置时间.
//it_virt_value,it_virt_value用于Virtual定时器,单位为jiffies。当进程运行时,不管在何种
//状态下,每个tick都使it_virt_value值减一当减到0时,向进程发送信号SIGVTALRM,根据
//it_virt_incr重置初值。
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_value;
struct timer_listreal_timer;   //指向实时定时器的指针
struct tmstimes;     //记录进程消耗的时间
unsigned long start_time;  //进程创建的时间
//记录进程在每个CPU上所消耗的用户态时间和核心态时间
longper_cpu_utime[NR_CPUS],per_cpu_stime[NR_CPUS];
//内存缺页和交换信息:
//min_flt,,maj_flt累计进程的次缺页数(Copyon Write页和匿名页)和主缺页数(从映射文件或交换
//设备读入的页面数);nswap记录进程累计换出的页面数,即写到交换设备上的页面数。
//cmin_flt, cmaj_flt,cnswap记录本进程为祖先的所有子孙进程的累计次缺页数,主缺页数和换出页面数。
//在父进程回收终止的子进程时,父进程会将子进程的这些信息累计到自己结构的这些域中
Unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:1; //表示进程的虚拟地址空间是否允许换出
//进程认证信息
//uid,gid为运行该进程的用户的用户标识符和组标识符,通常是进程创建者的uid,gid
//euid,egid为有效uid,gid
//fsuid,fsgid为文件系统uid,gid,这两个ID号通常与有效uid,gid相等,在检查对于文件
//系统的访问权限时使用他们。
//suid,sgid为备份uid,gid
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups; //记录进程在多少个用户组中
gid_t groups[NGROUPS]; //记录进程所在的组
//进程的权能,分别是有效位集合,继承位集合,允许位集合
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:1;
struct user_struct *user;
struct rlimit rlim[RLIM_NLIMITS];  //与进程相关的资源限制信息
unsigned short used_math;   //是否使用FPU
char comm[16];   //进程正在运行的可执行文件名
 //文件系统信息
int link_count, total_link_count;
//NULL if no tty进程所在的控制终端,如果不需要控制终端,则该指针为空
struct tty_struct*tty;
unsigned int locks;
//进程间通信信息
struct sem_undo*semundo;  //进程在信号灯上的所有undo操作
struct sem_queue *semsleeping; //当进程因为信号灯操作而挂起时,他在该队列中记录等待的操作
//进程的CPU状态,切换时,要保存到停止进程的task_struct中
Struct thread_struct thread;
  //文件系统信息
struct fs_struct *fs;
  //打开文件信息
struct files_struct *files;
  //信号处理函数
spinlock_t sigmask_lock;
struct signal_struct *sig; //信号处理函数
sigset_t blocked;  //进程当前要阻塞的信号,每个信号对应一位
struct sigpending pending;  //进程上是否有待处理的信号
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier) (void *priv);
void *notifier_data;
sigset_t *notifier_mask;
u32 parent_exec_id;
u32 self_exec_id;
 
spinlock_t alloc_lock;
void *journal_info;
};

你可能感兴趣的:(linux)