CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE

CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE

  • 1.下载bin压缩包
  • 2. 测试local模式
  • 2 安装python3
  • 3. Spark On Yarn 模式 的环境搭建
    • 3.1 修改 spark-env.sh 文件
    • 3.2 修改hadoop的yarn-site.xml
    • 3.3 Spark设置历史服务地址
    • 3.4 设置日志级别
    • 3.5 配置依赖spark jar包
    • 3.6 spark application ON YARN 测试
  • 4. SparkSQL整合Hive
    • 4.1 将hive-site.xml拷贝到spark安装路径conf目录
    • 4.2 将mysql的连接驱动包拷贝到spark的jars目录下
    • 4.3 修改 hive/conf/hive-site.xml,开启hive的metadata服务
    • 4.4. 测试Sparksql整合Hive

最近在学习Spark,在此记录一下Spark3.3.0集群在CentOS7的安装。
集群:
node1 192.168.88.100
node2 192.168.88.101
node3 192.168.88.102

1.下载bin压缩包

注意: Spark3.3.0的环境依赖Java 8/11/17, Scala 2.12/2.13, Python 3.7+、 R 3.5+等, 根据情况自行下载安装。
CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第1张图片

  1. 在spark的downloads页面下载spark-3.3.0-bin-hadoop3.tgz压缩包.
  2. 将下载好的压缩包上传到服务器node1的 /export/software/ 目录下。(可根据情况自行调整,也可以通过wget直接在服务器下载)
  3. 解压并设置软连接
tar -zxvf spark-3.3.0-bin-hadoop3.tgz  -C /export/server/
cd /export/server/
ln -s spark-3.3.0-bin-hadoop3 spark

进入Spark目录可看到有以下文件
CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第2张图片
bin: 可执行脚本.
conf: 配置文件.
data: 示例程序使用数据.
examples: 示例程序
jars: 依赖的jar包
python: python API包
sbin: 集群管理命令
yarn: 整合yarn相关内容

2. 测试local模式

Spark的local模式, 开箱即用, 直接启动bin目录下的spark-shell脚本

cd /export/server/spark/bin
./spark-shell.sh

CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第3张图片

说明: 在spark-shell命令行中
sc:SparkContext实例对象:
spark:SparkSession实例对象
Spark-shell说明:
1.直接使用./spark-shell
表示使用local 模式启动,在本机启动一个SparkSubmit进程
2.还可指定参数 --master,如:
spark-shell --master local[N] 表示在本地模拟N个线程来运行当前任务
spark-shell --master local[] 表示使用当前机器上所有可用的资源
3.不携带参数默认就是
spark-shell --master local[
]
4.后续还可以使用–master指定集群地址,表示把任务提交到集群上运行,如
./spark-shell --master spark://node01:7077,node02:7077
5.退出spark-shell
使用 :quit (快捷键 ctrl + D)

2 安装python3

由于CenOS7自带的python版本是2.X版本的,3台服务器都需要安装python3,安装python3是为了后面的pyspark,具体安装python3参考此博客。
我安装目前最新版python3.10.6
安装完毕后输入 python3 -V

python3 -V

会有以下界面(注意: 别覆盖CenOS7自带的python2.7.5版本, 因为yum命令需要python2的!)
CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第4张图片
安装python3完毕后,回到/spark/bin目录,输入

cd /export/server/spark/bin
./pyspark

会出现类似spark-shell的界面,只不过spark-shell的界面是scala语言的,pyspark是python的shell界面.
CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第5张图片

3. Spark On Yarn 模式 的环境搭建

经过以上测试,spark-shell与pyspark都没问题,下面开始搭建Spark On Yarn:

3.1 修改 spark-env.sh 文件

注意: 每台服务器的spark-env.sh 都要修改,为方便,最好在node1修改后分发到node2和node3,我这里是spark先在node1上安装spark,配置完成后统一将spark分发到node2和node3。

cd /export/server/spark/conf
cp spark-env.sh.template spark-env.sh 
vim /export/server/spark/conf/spark-env.sh

往文件中添加Hadoop的配置文件路径以及Yarn的配置文件路径:

HADOOP_CONF_DIR=/export/server/hadoop/etc/hadoop
YARN_CONF_DIR=/export/server/hadoop/etc/hadoop

3.2 修改hadoop的yarn-site.xml

注意: 与以上3.1一样,每台服务器的yarn-site.xml 都要修改,为方便,最好在node1修改后分发到node2和node3。

cd /export/server/hadoop-3.3.0/etc/hadoop/
vim /export/server/hadoop-3.3.0/etc/hadoop/yarn-site.xml

添加以下配置:


    
    
        yarn.resourcemanager.hostname
        node1
    
    
        yarn.nodemanager.aux-services
        mapreduce_shuffle
    
    
    
        yarn.nodemanager.resource.memory-mb
        20480
    
    
        yarn.scheduler.minimum-allocation-mb
        2048
    
    
        yarn.nodemanager.vmem-pmem-ratio
        2.1
    
    
    
        yarn.log-aggregation-enable
        true
    
    
    
        yarn.log-aggregation.retain-seconds
        604800
    
    
    
        yarn.log.server.url
        http://node1:19888/jobhistory/logs
    
    
    
        yarn.nodemanager.pmem-check-enabled
        false
    
    
        yarn.nodemanager.vmem-check-enabled
        false
    

3.3 Spark设置历史服务地址

注意: 每台服务器的spark-defaults.sh 都要修改,为方便,最好在node1修改后分发到node2和node3,我这里是spark先在node1上安装spark,配置完成后统一将spark分发到node2和node3。

cd /export/server/spark/conf
cp spark-defaults.conf.template spark-defaults.conf
vim spark-defaults.conf

添加以下内容

spark.eventLog.enabled                  true
spark.eventLog.dir                      hdfs://node1:8020/sparklog/
spark.eventLog.compress                 true
spark.yarn.historyServer.address        node1:18080
spark.yarn.jars  hdfs://node1:8020/spark/jars/*

3.4 设置日志级别

注意: 每台服务器的log4j.properties 都要修改,为方便,最好在node1修改后分发到node2和node3,我这里是spark先在node1上安装spark,配置完成后统一将spark分发到node2和node3。

cd /export/server/spark/conf
cp log4j.properties.template log4j.properties
vim log4j.properties

修改以下内容

rootLogger.level = WARN
rootLogger.appenderRef.stdout.ref = console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}:%m%n

3.5 配置依赖spark jar包

当Spark Application应用提交运行在YARN上时,默认情况下,每次提交应用都需要将依赖Spark相关jar包上传到YARN 集群中,为了节省网络IO时间和存储空间,将Spark相关jar包上传到HDFS目录中,设置属性告知Spark Application应用。
以下命令需要启动 hdfs,为方便,我直接应用start-all.sh

start-all.sh

Hadoop启动后,将spark的jar包上传到指定目录。

hadoop fs -mkdir -p /spark/jars/
hadoop fs -put /export/server/spark/jars/* /spark/jars/

将spark 分发到node2和node3上

cd /export/server/
scp -r spark root@node2:$PWD
scp -r spark root@node3:$PWD

Spark Application运行在YARN上,配置完成。

3.6 spark application ON YARN 测试

SPARK_HOME=/export/server/spark
${SPARK_HOME}/bin/spark-submit --master yarn --conf "spark.pyspark.driver.python=/export/server/python3/bin/python3" --conf "spark.pyspark.python=/export/server/python3/bin/python3" ${SPARK_HOME}/examples/src/main/python/pi.py 10

启动报错了,看到报错先别慌,看看报错信息:

22/08/20 19:05:15 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
22/08/20 19:06:46 ERROR SparkContext: Error initializing SparkContext.
java.io.FileNotFoundException: File does not exist: hdfs://node1:8020/sparklog
        at org.apache.hadoop.hdfs.DistributedFileSystem$29.doCall(DistributedFileSystem.java:1757)
        at org.apache.hadoop.hdfs.DistributedFileSystem$29.doCall(DistributedFileSystem.java:1750)
        at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
        at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1765)
        at org.apache.spark.deploy.history.EventLogFileWriter.requireLogBaseDirAsDirectory(EventLogFileWriters.scala:77)
        at org.apache.spark.deploy.history.SingleEventLogFileWriter.start(EventLogFileWriters.scala:221)
        at org.apache.spark.scheduler.EventLoggingListener.start(EventLoggingListener.scala:83)
        at org.apache.spark.SparkContext.<init>(SparkContext.scala:612)
        at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
        at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
        at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
        at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
        at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
        at py4j.Gateway.invoke(Gateway.java:238)
        at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
        at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
        at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
        at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
        at java.lang.Thread.run(Thread.java:748)
22/08/20 19:06:46 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to send shutdown message before the AM has registered!
22/08/20 19:06:46 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
Traceback (most recent call last):
  File "/export/server/spark-3.3.0-bin-hadoop3/examples/src/main/python/pi.py", line 32, in <module>
    .getOrCreate()
  File "/export/server/spark/python/lib/pyspark.zip/pyspark/sql/session.py", line 269, in getOrCreate
  File "/export/server/spark/python/lib/pyspark.zip/pyspark/context.py", line 483, in getOrCreate
  File "/export/server/spark/python/lib/pyspark.zip/pyspark/context.py", line 197, in __init__
  File "/export/server/spark/python/lib/pyspark.zip/pyspark/context.py", line 282, in _do_init
  File "/export/server/spark/python/lib/pyspark.zip/pyspark/context.py", line 402, in _initialize_context
  File "/export/server/spark/python/lib/py4j-0.10.9.5-src.zip/py4j/java_gateway.py", line 1585, in __call__
  File "/export/server/spark/python/lib/py4j-0.10.9.5-src.zip/py4j/protocol.py", line 326, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.api.java.JavaSparkContext.
: java.io.FileNotFoundException: File does not exist: hdfs://node1:8020/sparklog
        at org.apache.hadoop.hdfs.DistributedFileSystem$29.doCall(DistributedFileSystem.java:1757)
        at org.apache.hadoop.hdfs.DistributedFileSystem$29.doCall(DistributedFileSystem.java:1750)
        at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
        at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1765)
        at org.apache.spark.deploy.history.EventLogFileWriter.requireLogBaseDirAsDirectory(EventLogFileWriters.scala:77)
        at org.apache.spark.deploy.history.SingleEventLogFileWriter.start(EventLogFileWriters.scala:221)
        at org.apache.spark.scheduler.EventLoggingListener.start(EventLoggingListener.scala:83)
        at org.apache.spark.SparkContext.<init>(SparkContext.scala:612)
        at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
        at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
        at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
        at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
        at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
        at py4j.Gateway.invoke(Gateway.java:238)
        at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
        at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
        at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
        at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
        at java.lang.Thread.run(Thread.java:748)

CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第6张图片
此报错的原因是在HDFS上无SparkLog目录,因此需要在HDFS新建SparkLog目录

hadoop fs -mkdir hdfs://node1:8020/sparklog

然后再次执行以上命令:
CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第7张图片
至此,spark ON yarn 配置成功!

4. SparkSQL整合Hive

因为hive的hiveserver2服务走的MapReduce,现在需求需要通过thriftserver走内存,所以现在需要整合spark on hive,现有服务器已经有了hive3.1.2,我就偷个懒直接拿来用了,嘿嘿。

4.1 将hive-site.xml拷贝到spark安装路径conf目录

我这里的hive版本是3.1.2;到hive官网上下载apache-hive-3.1.2-bin.tar.gz后,修改 hive/conf/hive-site.xml文件:


        
        
                javax.jdo.option.ConnectionURL
                jdbc:mysql://node1:3306/metastore?createDatabaseIfNotExist=true&useSSL=f
alse
        

        
                javax.jdo.option.ConnectionDriverName
                com.mysql.jdbc.Driver
        

        
                javax.jdo.option.ConnectionUserName
                root
        

        
                javax.jdo.option.ConnectionPassword
                XXXXXX
        
        
        
        
                hive.server2.thrift.bind.host
                node1
        

        
        
                hive.metastore.uris
                thrift://node1:9083
        

        
        
                hive.metastore.event.db.notification.api.auth
                false
        

        
          hive.zookeeper.quorum
          node1,node2,node3
        
        
          hbase.zookeeper.quorum
          node1,node2,node3
        
        
        	hive.server2.enable.doAs
         	false
        

然后在node1执行以下命令将hive-site.xml 拷贝到node1、node2、node3这三台服务器的spark安装路径的conf目录:

cd /export/server/hive/conf/
cp hive-site.xml /export/server/spark/conf/
scp hive-site.xml root@node2:/export/server/spark/conf/
scp hive-site.xml root@node3:/export/server/spark/conf/

4.2 将mysql的连接驱动包拷贝到spark的jars目录下

查看node1的/export/server/hive/lib目录有无mysql-connector-java-5.1.32.jar,若无(因为我服务器本来就安装好了hive,我现在整合spark on hive),则需要上传到/export/server/hive/lib目录中,然后在node1执行以下命令将连接驱动包拷贝到spark的jars目录下,三台机器都要进行拷贝;

cd /export/server/hive/lib
cp mysql-connector-java-5.1.32.jar  /export/server/spark/jars/
scp mysql-connector-java-5.1.32.jar  root@node2:/export/server/spark/jars/
scp mysql-connector-java-5.1.32.jar  root@node3:/export/server/spark/jars/

4.3 修改 hive/conf/hive-site.xml,开启hive的metadata服务

1.修改 hive/conf/hive-site.xml新增如下配置:


    
        hive.metastore.uris
        thrift://node1:9083
    

  1. 后台启动 Hive MetaStore服务
    注意: hive需要配置环境变量
nohup hive --service metastore &

4.4. 测试Sparksql整合Hive

1.Spark-sql方式测试
先启动hadoop集群,在启动spark集群,确保启动成功之后node1执行命令,指明master地址、每一个executor的内存大小、一共所需要的核数、mysql数据库连接驱动:

cd /export/server/spark
bin/spark-sql --master local[2] --executor-memory 512m --total-executor-cores 1

连接成功后可以通过show databases; 查看hive中存在的库,如下后缀为_dm、_dw、_ods三个库就是我hive中原来就存在的库。
CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第8张图片
2. spark-shell 方式测试

bin/spark-shell --master local[3]


22/08/20 23:41:51 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Spark context Web UI available at http://node1:4040
Spark context available as 'sc' (master = local[3], app id = local-1661010112493).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 3.3.0
      /_/
         
Using Scala version 2.12.15 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_241)
Type in expressions to have them evaluated.
Type :help for more information.

scala> spark.sql("show databases").show

CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第9张图片
至此,完成Spark on hive 的集成!可以愉快的在spark上写SQL了,可以通过开启hive的metadata服务和spark的thrift服务,然后通过navicat、dbeaver、pycharm、idea等工具连接到hive。具体开启spark的thrift服务如下:

cd /export/server/spark/sbin/

./start-thriftserver.sh \
--hiveconf hive.server2.thrift.port=10000 \
--hiveconf hive.server2.thrift.bind.host=node1\
--master local[2]

启动完成后,可以通过jps -m命令看是否有SparkSubmit进程,如下:
CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第10张图片
然后通过idea等连接到spark,我以pycharm为例:
CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第11张图片
CentOS7安装Spark3.3.0 ON YARN集群并整合HIVE, Spark-On-HIVE_第12张图片
至此,大功告成!!!可以愉快的SQL啦~~

你可能感兴趣的:(Hive,工具部署,spark,hive,大数据)