python的concurrent.futures模块实现进程池线程池,继而实现多进程多线程
参考python的concurrent.futures模块
1、
# -*- coding: utf-8 -*-
import time
import concurrent.futures
number_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
def evaluate_item(x):
# 计算总和,这里只是为了消耗时间
result_item = count(x)
return result_item
def count(number) :
for i in range(0, 10000000):
i=i+1
return i * number
if __name__ == "__main__":
# 顺序执行
start_time = time.time()
for item in number_list:
print(evaluate_item(item))
print("Sequential execution in " + str(time.time() - start_time), "seconds")
# 线程池
start_time_t = time.time()
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
futures = [executor.submit(evaluate_item, item) for item in number_list]
for future in concurrent.futures.as_completed(futures):
print(future.result())
print ("Thread pool execution in " + str(time.time() - start_time_t), "seconds")
# 进程池
start_time_p = time.time()
with concurrent.futures.ProcessPoolExecutor(max_workers=5) as executor:
futures = [executor.submit(evaluate_item, item) for item in number_list]
for future in concurrent.futures.as_completed(futures):
print(future.result())
print ("Process pool execution in " + str(time.time() - start_time_p), "seconds")
2、
# -*- coding: utf-8 -*-
import time
import concurrent.futures
number_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
def evaluate_item(x):
# 计算总和,这里只是为了消耗时间
result_item = count(x)
return result_item
def count(number) :
for i in range(0, 10000000):
i=i+1
return i * number
if __name__ == "__main__":
# 线程池
start_time_t = time.time()
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
for number, prime in zip(number_list, executor.map(evaluate_item, number_list)):
print('%d is prime: %s' % (number, prime))
print ("Thread pool execution in " + str(time.time() - start_time_t), "seconds")
# 进程池
start_time_p = time.time()
with concurrent.futures.ProcessPoolExecutor(max_workers=5) as executor:
for number, prime in zip(number_list, executor.map(evaluate_item, number_list)):
print('%d is prime: %s' % (number, prime))
print ("Process pool execution in " + str(time.time() - start_time_p), "seconds")