opencv 多角度模板匹配

总结一下实现多角度模板匹配踩的坑
一 、多角度匹配涉及到要使用mask,首先opencv matchTemplateMask自带的源码如下:

static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _result, int method, InputArray _mask )
{
    CV_Assert(_mask.depth() == CV_8U || _mask.depth() == CV_32F);
    CV_Assert(_mask.channels() == _templ.channels() || _mask.channels() == 1);
    CV_Assert(_templ.size() == _mask.size());
    CV_Assert(_img.size().height >= _templ.size().height &&
              _img.size().width >= _templ.size().width);

    Mat img = _img.getMat(), templ = _templ.getMat(), mask = _mask.getMat();

    if (img.depth() == CV_8U)
    {
        img.convertTo(img, CV_32F);
    }
    if (templ.depth() == CV_8U)
    {
        templ.convertTo(templ, CV_32F);
    }
    if (mask.depth() == CV_8U)
    {
        // To keep compatibility to other masks in OpenCV: CV_8U masks are binary masks
        threshold(mask, mask, 0/*threshold*/, 1.0/*maxVal*/, THRESH_BINARY);
        mask.convertTo(mask, CV_32F);
    }

    Size corrSize(img.cols - templ.cols + 1, img.rows - templ.rows + 1);
    _result.create(corrSize, CV_32F);
    Mat result = _result.getMat();

    // If mask has only one channel, we repeat it for every image/template channel
    if (templ.type() != mask.type())
    {
        // Assertions above ensured, that depth is the same and only number of channel differ
        std::vector<Mat> maskChannels(templ.channels(), mask);
        merge(maskChannels.data(), templ.channels(), mask);
    }

    if (method == CV_TM_SQDIFF || method == CV_TM_SQDIFF_NORMED)
    {
        Mat temp_result(corrSize, CV_32F);
        Mat img2 = img.mul(img);
        Mat mask2 = mask.mul(mask);
        // If the mul() is ever unnested, declare MatExpr, *not* Mat, to be more efficient.
        // NORM_L2SQR calculates sum of squares
        double templ2_mask2_sum = norm(templ.mul(mask), NORM_L2SQR);
        crossCorr(img2, mask2, temp_result, Point(0,0), 0, 0);
        crossCorr(img, templ.mul(mask2), result, Point(0,0), 0, 0);
        // result and temp_result should not be switched, because temp_result is potentially needed
        // for normalization.
        result = -2 * result + temp_result + templ2_mask2_sum;

        if (method == CV_TM_SQDIFF_NORMED)
        {
            sqrt(templ2_mask2_sum * temp_result, temp_result);
            result /= temp_result;
        }
    }
    else if (method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED)
    {
        // If the mul() is ever unnested, declare MatExpr, *not* Mat, to be more efficient.
        Mat templ_mask2 = templ.mul(mask.mul(mask));
        crossCorr(img, templ_mask2, result, Point(0,0), 0, 0);

        if (method == CV_TM_CCORR_NORMED)
        {
            Mat temp_result(corrSize, CV_32F);
            Mat img2 = img.mul(img);
            Mat mask2 = mask.mul(mask);
            // NORM_L2SQR calculates sum of squares
            double templ2_mask2_sum = norm(templ.mul(mask), NORM_L2SQR);
            crossCorr( img2, mask2, temp_result, Point(0,0), 0, 0 );
            sqrt(templ2_mask2_sum * temp_result, temp_result);
            result /= temp_result;
        }
    }
    else if (method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED)
    {
        // Do mul() inline or declare MatExpr where possible, *not* Mat, to be more efficient.

        Scalar mask_sum = sum(mask);
        // T' * M where T' = M * (T - 1/sum(M)*sum(M*T))
        Mat templx_mask = mask.mul(mask.mul(templ - sum(mask.mul(templ)).div(mask_sum)));
        Mat img_mask_corr(corrSize, img.type()); // Needs separate channels

        // CCorr(I, T'*M)
        crossCorr(img, templx_mask, result, Point(0, 0), 0, 0);
        // CCorr(I, M)
        crossCorr(img, mask, img_mask_corr, Point(0, 0), 0, 0);

        // CCorr(I', T') = CCorr(I, T'*M) - sum(T'*M)/sum(M)*CCorr(I, M)
        // It does not matter what to use Mat/MatExpr, it should be evaluated to perform assign subtraction
        Mat temp_res = img_mask_corr.mul(sum(templx_mask).div(mask_sum));
        if (img.channels() == 1)
        {
            result -= temp_res;
        }
        else
        {
            // Sum channels of expression
            temp_res = temp_res.reshape(1, result.rows * result.cols);
            // channels are now columns
            reduce(temp_res, temp_res, 1, REDUCE_SUM);
            // transform back, but now with only one channel
            result -= temp_res.reshape(1, result.rows);
        }
        if (method == CV_TM_CCOEFF_NORMED)
        {
            // norm(T')
            double norm_templx = norm(mask.mul(templ - sum(mask.mul(templ)).div(mask_sum)),
                                      NORM_L2);
            // norm(I') = sqrt{ CCorr(I^2, M^2) - 2*CCorr(I, M^2)/sum(M)*CCorr(I, M)
            //                  + sum(M^2)*CCorr(I, M)^2/sum(M)^2 }
            //          = sqrt{ CCorr(I^2, M^2)
            //                  + CCorr(I, M)/sum(M)*{ sum(M^2) / sum(M) * CCorr(I,M)
            //                  - 2 * CCorr(I, M^2) } }
            Mat norm_imgx(corrSize, CV_32F);
            Mat img2 = img.mul(img);
            Mat mask2 = mask.mul(mask);
            Scalar mask2_sum = sum(mask2);
            Mat img_mask2_corr(corrSize, img.type());
            crossCorr(img2, mask2, norm_imgx, Point(0,0), 0, 0);
            crossCorr(img, mask2, img_mask2_corr, Point(0,0), 0, 0);
            temp_res = img_mask_corr.mul(Scalar(1.0, 1.0, 1.0, 1.0).div(mask_sum))
                           .mul(img_mask_corr.mul(mask2_sum.div(mask_sum)) - 2 * img_mask2_corr);
            if (img.channels() == 1)
            {
                norm_imgx += temp_res;
            }
            else
            {
                // Sum channels of expression
                temp_res = temp_res.reshape(1, result.rows*result.cols);
                // channels are now columns
                // reduce sums columns (= channels)
                reduce(temp_res, temp_res, 1, REDUCE_SUM);
                // transform back, but now with only one channel
                norm_imgx += temp_res.reshape(1, result.rows);
            }
            sqrt(norm_imgx, norm_imgx);
            result /= norm_imgx * norm_templx;
        }
    }
}

可以看到使用用了四次dft来计算卷积,目标图像要与mask卷三次,来计算目标图像在模板区域内的和,平方和。其中最后一次CCorr(I, mask2)可以省略掉,它跟CCorr(I, mask)是一样的,因为mask是二值。

 // CCorr(I, T'*M)
        crossCorr(img, templx_mask, result, Point(0, 0), 0, 0);
        // CCorr(I, M)
        crossCorr(img, mask, img_mask_corr, Point(0, 0), 0, 0);
        crossCorr(img2, mask2, norm_imgx, Point(0,0), 0, 0);
        crossCorr(img, mask2, img_mask2_corr, Point(0,0), 0, 0);

所以耗时的部分就是这三次卷积,可以用simd加速。opencv以及封装了simd指令,怎么用看这位博主OpenCV 4.x3.4.x版本以上也有中提供了强大的统一向量指令
实测,在高金字塔进行全局匹配的时候,用crossCorr来计算卷积,而用simd计算局部卷积,这样更快。
二、模板的旋转

  1. 创建一个paddingImg,其尺寸是模板的对角线长+1,然后再将模板图像拷贝到paddingImg中间去,这样旋转就不会超出边界,代码如下。
  2. 还有一个点,就是旋转的插值是最好使用INTER_NEAREST,试过其他几种,在比较高的金字塔层中匹配,会出现匹配不到的情况。
void NccMatch::RotateImg(Mat mImg, int nAngle, Mat& outImg, Mat& mask,RotatedRect* ptrMinRect, Point2d pRC)
{
    if (mImg.depth()    != CV_32F) { mImg.convertTo(mImg, CV_32F); }
    int nDiagonal       = sqrt(pow(mImg.cols, 2) + pow(mImg.rows, 2)) + 1;
    Mat paddingImg      = -1 * Mat::ones(Size(nDiagonal, nDiagonal), mImg.type());
    Rect roi(Point((nDiagonal - mImg.cols) * 0.5, (nDiagonal - mImg.rows) * 0.5), Size(mImg.cols, mImg.rows));
    mImg.copyTo(paddingImg(roi));
    Mat M = getRotationMatrix2D(Point2d(paddingImg.cols * 0.5, paddingImg.rows * 0.5), nAngle, 1.0);
    warpAffine(paddingImg, outImg, M, paddingImg.size(), INTER_NEAREST, 0, Scalar::all(-2));
    mask = outImg.clone();
    threshold(mask, mask, -1, 1, THRESH_BINARY);
    //RotatedRect rRect(Point2d(paddingImg.cols * 0.5, paddingImg.rows * 0.5), Size2f(mImg.cols, mImg.rows), -nAngle);
    ptrMinRect->center  = Point2d(paddingImg.cols * 0.5, paddingImg.rows * 0.5);
    ptrMinRect->size    = Size2f(mImg.cols, mImg.rows);
    ptrMinRect->angle   = -nAngle;
    return;
}

三,匹配
一定要把目标图像进行padding,确保模板能滑过每一个像素,不然会发现有些图,死活都匹配不上了。

最后,实现的效果如下,有些测试图是用的这位大佬的https://github.com/DennisLiu1993/Fastest_Image_Pattern_Matching
步长和亚像素的计算也是参考这位大佬。

目标图像2592x1944,模板149x150,匹配角度[0,360],耗时约为:34ms

目标图像646x492,模板214x98,匹配角度[0,360],金字塔层数=4,耗时约为:14ms
opencv 多角度模板匹配_第1张图片
目标图像2592x1944,模板466x135,匹配角度[0,360],金字塔层数=5,耗时约为:58ms
目标图像830x822,模板209x95,匹配角度[0,360],金字塔层数=4,耗时约为:45ms

测试程序

你可能感兴趣的:(Opencv,opencv,计算机视觉,c++)