最详细的YOLO-V5模型配置文件yaml结构理解

文章目录

  • 前言
  • 一、yolov5配置yaml文件
  • 二、模型结构详解图
  • 总结


前言

YOLO-V5(GIT链接):https://github.com/ultralytics/yolov5


一、yolov5配置yaml文件

# YOLOv5  by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  							# number of classes
depth_multiple: 1.0  				# model depth multiple
width_multiple: 1.0  				# layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  			# P3/8
  - [30,61, 62,45, 59,119]  		# P4/16
  - [116,90, 156,198, 373,326]  	# P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],	# 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  	# 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  	# 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  	# 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  	# 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  		# 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  		# cat backbone P4
   [-1, 3, C3, [512, False]],  		# 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  		# cat backbone P3
   [-1, 3, C3, [256, False]],  		# 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  	# cat head P4
   [-1, 3, C3, [512, False]],  		# 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  	# cat head P5
   [-1, 3, C3, [1024, False]],  	# 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

先分段介绍一下上面代码中一些参数表示的意思。

# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

Parameters为一些超参数的设置内容。其中,

  1. nc表示类别的数量,由于默认使用COCO数据集,这里nc=80
  2. depth_multiple表示深度因子,用来控制一些特定模块的数量的,模块数量多网络深度就深;
  3. width_multiple表示宽度因子,用来控制整个网络结构的通道数量,通道数量越多,网络就看上去更胖更宽;
  4. anchors表示预先设置的anchor框大小,由于有3个检测输出头位置,因此有3行。
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]], 	 # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],   # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]], 	 # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]], 	 # 9
  ]

这里就是开始构建整体的网络中各个模块的结构,都用list的格式表示为[from, number, module, args]。其中,

  1. from表示该模块的输入来源,如果为-1则表示来自于上一个模块中,如果为其他具体的值则表示从特定的模块中得到输入信息;
  2. number表示建立number个该模块叠加起来,后期将简写成nn=1表示这个模块就放了一个;
  3. module表示具体的模块名称,具体可以看YOLOV5项目代码中common.py文件。(不嫌弃的话,手画了一张图放在下面,简单看看)
  4. args表示该模块具体的参数设置,不同的模块是不同的参数设置,在后面的图里会详细说的。

最详细的YOLO-V5模型配置文件yaml结构理解_第1张图片

二、模型结构详解图

在深度因子depth_multiple与宽度因子width_multiple都为1.0的情况下,我们绘制了如下图的模型解释表,Layer_ID表示这个层的ID位置,方便后面from调用的查看,output_FM_size表示该层输出的特征图大小(这里假设输入图片为640x640x3)。

最详细的YOLO-V5模型配置文件yaml结构理解_第2张图片

上图中有些符号与颜色解释一下:

  1. 灰色背景字表示模型的Concat操作位置;
  2. 绿色背景字表示模型的检测输出头位置;
  3. 黄色五角星表示模型中被其他层通过from调用的层结构位置;
  4. 红色圈是深度因子控制下的叠加层数量,当深度因子为1.0时,依次为3、6、9、3、3、3;当深度因子为0.33时,乘上0.33,依次为1、2、3、1、1、1
  5. 红色框是宽度因子控制下的通道数量,当宽度因子为1.0时,依次为3、64、128...;当深度因子为0.50时,乘上0.50,依次为3、32、64...

下图是YOLO-V5的实际结构图,可以与上图中的信息对应着看。其中,

  1. 红色实线箭头表示与上图Layer_ID一致的结构构造流程;
  2. 模块右上角红字表示该模块的Layer_ID,仅标注了一些与结构相关的重要模块;
  3. 黄色五角星表示被其他模块通过from调用的模块位置,与上图中的黄色五角星对应;
  4. 灰色底矩形表示Concat操作模块,与上图中的灰色背景字对应;
  5. 绿色底矩形表示检测输出头,与上图中的绿色背景字对应。

最详细的YOLO-V5模型配置文件yaml结构理解_第3张图片


总结

本文仅表示个人理解,如果有错误欢迎指出。

你可能感兴趣的:(python,人工智能,计算机视觉)