统计全球每年的最高/最低气温

文章目录

  • 数据准备
    • 1.下载数据
    • 2.处理数据
      • 1.在linux本地目录中创建一个文件夹ncdc
      • 2.去下载的目录,然后把数据复制到ncdc中
      • 3.解压文件gzip -d *.op.gz
      • 4.输出数据到data.txt
      • 5.上传到hdfs中
  • 一、统计全球每年的最高气温和最低气温
    • 实现思路
    • 1.YearMaxTAndMinT
    • 2.Mapper:MaxTAndMinTMapper
    • 3.Combiner:MaxTAndMinTCombiner
    • 4.Reducer:MaxTAndMinTReducer
    • 5.运行代码:MaxTAndMinT.java
    • 6.输出结果
  • 二、筛选气温在15~25°C之间的数据
    • 1.MTAMTMapper类
    • 2.MTAMTReducer类
    • 3.MTAMT类
    • 4.输出结果
  • 总结


数据准备

先启动hadoop,然后打开eclipse

1.下载数据

打开虚拟机从:ftp://ftp.ncdc.noaa.gov/pub/data/gsod 上下载2014~2016年的数据
统计全球每年的最高/最低气温_第1张图片

2.处理数据

1.在linux本地目录中创建一个文件夹ncdc

cd /usr/loacl
madir /data
cd /usr/loacl/data
mkdir /ncdc

2.去下载的目录,然后把数据复制到ncdc中

统计全球每年的最高/最低气温_第2张图片

3.解压文件gzip -d *.op.gz

统计全球每年的最高/最低气温_第3张图片

4.输出数据到data.txt

在/usr/local/data目录下创建一个文件data.txt
cd /usr/local/data
vim data.txt
在这里插入图片描述
cd /usr/local/data/ncdc
回到ncdc目录执行命令 来删除所有文件的首行字段sed -i ‘1d’ *
统计全球每年的最高/最低气温_第4张图片
将内容写入data.txt文件当中
cat *>>…/data.txt
在这里插入图片描述
查看了一下数据
统计全球每年的最高/最低气温_第5张图片

5.上传到hdfs中

hdfs dfs -put data.txt /user/temperature
统计全球每年的最高/最低气温_第6张图片

一、统计全球每年的最高气温和最低气温

实现思路

(1)自定义一个数据类型YearMaxTAndMinT来继承Writable接口,在这个类里定义字符串类型的变量year,定义double类型的变量maxTemp和minTemp,获取get()和set()方法。
(2)创建一个Mapper,命名为MaxTAndMinTMapper,获取年份和气温,年份为key,气温为value输出
(3)创建一个Combiner,命名为MaxTAndMinTCombiner,获取年份最高气温和最低气温,年份为key,气温为value输出
(4)创建一个Reducer,命名为MaxTAndMinTReducer,也是获取年份最高气温和最低气温,并创建一个YearMaxTAndMinT对象,按最高气温和最低气温分别设置maxTemp和minTemp的值。将YearMaxTAndMinT最为value,NullWritable.get()作为key输出
(5)创建运行代码,创建一个驱动类MaxTAndMinT.java
代码如下:

1.YearMaxTAndMinT

package temperature;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
public class YearMaxTAndMinT implements Writable{
         private String year;
         private double maxTemp;
         private double minTemp;
         public YearMaxTAndMinT() {
                 
         }

         public String getYear() {
                   return year;

         }

         public void setYear(String year) {
                   this.year = year;

         }

         public double getMaxTemp() {
                   return maxTemp;

         }

         public void setMaxTemp(double maxTemp) {
                   this.maxTemp = maxTemp;

         }

         public double getMinTemp() {
                   return minTemp;

         }

         public void setMinTemp(double minTemp) {
                   this.minTemp = minTemp;
         }

         @Override

         public void readFields(DataInput in) throws IOException {
                   this.year=in.readUTF();
                   this.maxTemp=in.readDouble();
                   this.minTemp=in.readDouble();     
         }

         @Override

         public void write(DataOutput out) throws IOException {
                   out.writeUTF(year);
                   out.writeDouble(maxTemp);
                   out.writeDouble(minTemp); 
         }

    @Override
    public String toString() {
   	 return this.year+"\t"+this.maxTemp+"\t"+this.minTemp;
    }
}

2.Mapper:MaxTAndMinTMapper

package temperature;
import java.io.IOException;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MaxTAndMinTMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> {
        @Override
         protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, DoubleWritable>.Context context)
                            throws IOException, InterruptedException {
                   String line = value.toString().trim();
    int[] indexs = getIndexs(line);// 获取年份和气温数据的索引范围
    String year = getYear(line, indexs);// 获取年份
        double airTemperature;
        String temperature = getTemperature(line, indexs);
        if (temperature.charAt(0) == '-') { // 每行数据中带 - 号的气温数据做负数处理
            airTemperature = 0-Double.parseDouble(temperature.substring(1));// 获取气温数值
        } else {
            airTemperature = Double.parseDouble(temperature);// 获取气温数值
        }
        context.write(new Text(year), new DoubleWritable(airTemperature));
         }
     //获取年份
   

    public String getYear(String line,int[] indexs){

    return line.substring(indexs[1], indexs[2]).replace(" ", "").substring(0, 4);

    }

      //获取气温
    public String getTemperature(String line,int[] indexs){
    return line.substring(indexs[2],indexs[3]).replace(" ", "");

    }

   //获取年份和气温的索引范围

    
    public int[] getIndexs(String line){

    int[] indexs = new int[4];

    int n=0;

    for(int i=0;i < line.length();i++){

               if(line.charAt(i) == ' '){

                        if(line.charAt(i+1) != ' '){

                                 indexs[n++]=i+1;

                        }

                        if(n == 4){

                                 break;
                        }
               }
    }

    return indexs;

    }

}
  

3.Combiner:MaxTAndMinTCombiner

package temperature;

import java.io.IOException;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class MaxTAndMinTCombiner extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
         @Override
         protected void reduce(Text key, Iterable<DoubleWritable> values,
                            Reducer<Text, DoubleWritable, Text, DoubleWritable>.Context context) throws IOException, InterruptedException {
                   double maxValue = Double.MIN_VALUE;// 获取整形最大值
                   double minValue=Double.MAX_VALUE;// 获取最小值
        for (DoubleWritable value : values) {
            maxValue = Math.max(maxValue, value.get());// 获取最高温度
            minValue=Math.min(minValue, value.get());// 获取最低温度
        }
        context.write(key, new DoubleWritable(maxValue));
        context.write(key, new DoubleWritable(minValue));

         }
}

4.Reducer:MaxTAndMinTReducer

package temperature;

import java.io.IOException;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class MaxTAndMinTReducer extends Reducer<Text, DoubleWritable, NullWritable,YearMaxTAndMinT> {
         private YearMaxTAndMinT year_max_min=new YearMaxTAndMinT();
         @Override
         protected void reduce(Text key, Iterable<DoubleWritable> values,
                            Reducer<Text, DoubleWritable, NullWritable,YearMaxTAndMinT>.Context context)
                                               throws IOException, InterruptedException {
                   double maxValue = Double.MIN_VALUE;// 获取整形最大值

                   double minValue=Double.MAX_VALUE;// 获取最小值
        for (DoubleWritable value : values) {
            maxValue = Math.max(maxValue, value.get());// 获取最高温度
            minValue=Math.min(minValue, value.get());
        }
       year_max_min.setYear(key.toString());
       year_max_min.setMaxTemp(maxValue);
       year_max_min.setMinTemp(minValue);    
        context.write(NullWritable.get(),year_max_min);
         }
}

5.运行代码:MaxTAndMinT.java

package temperature;


import java.io.IOException;
import java.nio.file.FileSystem;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import test.JarUtil;

public class MaxTAndMinT extends Configured implements Tool{

	public int run(String[] args) throws Exception {
		Configuration conf = getConf();		
	
        Job MaxTAndMinTJob = Job.getInstance(conf,"max min");
		
		//重要:指定本job所在的jar包
        MaxTAndMinTJob.setJarByClass(MaxTAndMinT.class);
		
		//设置wordCountJob所用的mapper逻辑类为哪个类
		MaxTAndMinTJob.setMapperClass(MaxTAndMinTMapper.class);
		//设置wordCountJob所用的reducer逻辑类为哪个类
		MaxTAndMinTJob.setReducerClass(MaxTAndMinTReducer.class);
		
		//设置map阶段输出的kv数据类型
		MaxTAndMinTJob.setMapOutputKeyClass(Text.class);
		MaxTAndMinTJob.setMapOutputValueClass(DoubleWritable.class);
		
		//设置最终输出的kv数据类型
		MaxTAndMinTJob.setOutputKeyClass(NullWritable.class);
		MaxTAndMinTJob.setOutputValueClass(YearMaxTAndMinT.class);
		MaxTAndMinTJob.setCombinerClass(MaxTAndMinTCombiner.class);
		//设置要处理的文本数据所存放的路径
		FileInputFormat.setInputPaths(MaxTAndMinTJob, new Path("hdfs://master:8020/user/temperature/data.txt"));
		FileOutputFormat.setOutputPath(MaxTAndMinTJob, new Path("hdfs://master:8020/user/output/temperature"));
		
		//提交job给hadoop集群
		MaxTAndMinTJob.waitForCompletion(true);
        return 0;
    }

    public static void main(String[] args) throws Exception {
        //获取当前环境变量
    	Configuration conf =  new Configuration();
    	conf.set("fs.defaultFS", "hdfs://master:8020");// 指定namenode
    	
    	//使用ToolRunner的run方法对自定义的类型进行处理
    	conf.set("mapreduce.job.jar",JarUtil.jar(MaxTAndMinT.class));
          	
    	try {
    	   ToolRunner.run(conf, new MaxTAndMinT(), args);
    	} catch (Exception e) {
			e.printStackTrace();
		}	
    }
}

6.输出结果

统计全球每年的最高/最低气温_第7张图片

二、筛选气温在15~25°C之间的数据

一般来说,最适合人类生存的温度是15~25°C,所以我们要筛选出这些数据
代码如下:

1.MTAMTMapper类

package between;
import java.io.IOException;

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;


public class MTAMTMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> {
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, DoubleWritable>.Context context)
                       throws IOException, InterruptedException {
              String line = value.toString().trim();
int[] indexs = getIndexs(line);// 获取年份和气温数据的索引范围
String year = getYear(line, indexs);// 获取年份
   double airTemperature;
   String temperature = getTemperature(line, indexs);
   if (temperature.charAt(0) == '-') { // 每行数据中带 - 号的气温数据做负数处理
       airTemperature = 0-Double.parseDouble(temperature.substring(1));// 获取气温数值
   } else {
       airTemperature = Double.parseDouble(temperature);// 获取气温数值
   }
   context.write(new Text(year), new DoubleWritable(airTemperature));
    }
//获取年份


public String getYear(String line,int[] indexs){

return line.substring(indexs[1], indexs[2]).replace(" ", "").substring(0, 4);

}

 //获取气温


public String getTemperature(String line,int[] indexs){
return line.substring(indexs[2],indexs[3]).replace(" ", "");

}

//获取年份和气温的索引范围


public int[] getIndexs(String line){

int[] indexs = new int[4];

int n=0;

for(int i=0;i < line.length();i++){

          if(line.charAt(i) == ' '){

                   if(line.charAt(i+1) != ' '){

                            indexs[n++]=i+1;

                   }

                   if(n == 4){

                            break;

                   }

          }
}

return indexs;

     }

}

2.MTAMTReducer类

package between;
import java.io.IOException;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;

public class MTAMTReducer extends Reducer<Text,DoubleWritable,Text,DoubleWritable>{
	

	protected void reduce(Text key, Iterable<DoubleWritable> values,Context context) throws IOException, InterruptedException {
		String date=key.toString();

		for(DoubleWritable value:values) {
			if(value.get()>=15 && value.get()<=25) {
		if(date.contains("2014")|| date.contains("2015")|| date.contains("2016")) {
				context.write(key,new DoubleWritable(value.get()));
			}
			}
			}
	}
	}

3.MTAMT类

package between;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import test.JarUtil;
public class MTAMT extends Configured implements Tool{
	@Override
    public int run(String[] args) throws Exception {
		Configuration conf = getConf();		
	
        Job MTAMTJob = Job.getInstance(conf,"15~25°C");
		
		//重要:指定本job所在的jar包
        MTAMTJob.setJarByClass(MTAMT.class);
		//设置wordCountJob所用的mapper逻辑类为哪个类
		MTAMTJob.setMapperClass(MTAMTMapper.class);
		//设置wordCountJob所用的reducer逻辑类为哪个类
		MTAMTJob.setReducerClass(MTAMTReducer.class);
		//设置map阶段输出的kv数据类型
		MTAMTJob.setMapOutputKeyClass(Text.class);
		MTAMTJob.setMapOutputValueClass(DoubleWritable.class);
		
		//设置最终输出的kv数据类型
		MTAMTJob.setOutputKeyClass(Text.class);
		MTAMTJob.setOutputValueClass(DoubleWritable.class);
		
		MTAMTJob.setNumReduceTasks(2);
		//设置要处理的文本数据所存放的路径
		FileInputFormat.setInputPaths(MTAMTJob, new Path("hdfs://master:8020/user/temperature/data.txt"));
		FileOutputFormat.setOutputPath(MTAMTJob, new Path("hdfs://master:8020/user/output/temperature2"));
		
		//提交job给hadoop集群
		MTAMTJob.waitForCompletion(true);
        return 0;
    }

    public static void main(String[] args) throws Exception {
        //获取当前环境变量
    	Configuration conf =  new Configuration();
    	conf.set("fs.defaultFS", "hdfs://master:8020");
    	
    	//使用ToolRunner的run方法对自定义的类型进行处理
    	conf.set("mapreduce.job.jar",JarUtil.jar(MTAMT.class));
          	
    	try {
    	   ToolRunner.run(conf, new MTAMT(), args);
    	} catch (Exception e) {
			e.printStackTrace();
		}	
    }

}

4.输出结果

统计全球每年的最高/最低气温_第8张图片

总结

以上就是全部内容,欢迎大家在评论区讨论

你可能感兴趣的:(MapReduce,hadoop,mapreduce,linux,centos)