手写数字识别是一个多分类问题,共有10个分类,每个手写数字图像的类别标签是0~9中的其中一个数。例如下面这三张图片的标签分别是0,1,2。
任务:利用sklearn来训练一个简单的全连接神经网络,即多层感知机(Multilayer perceptron,MLP)用于识别数据集DBRHD的手写数字。
DBRHD数据集的每个图片是一个由0或1组成的32*32的文本矩阵;
多层感知机的输入为图片矩阵展开的1*1024个神经元。
MLP输出:“one-hot vectors”
一个one-hot向量除了某一位的数字是1以外其余各维度数字都是0。
图片标签将表示成一个只有在第n维度(从0开始)数字为1的10维向量。比如,标签0将表示成[1,0,0,0,0,0,0,0,0,0,0]。即,MLP输出层具有10个神经元。
MLP的输入与输出层,中间隐藏层的层数和神经元的个数设置都将影响该MLP模型的准确率。
在本实例中,我们只设置一层隐藏层,在后续实验中比较该隐藏层神经元个数为50、100、200时的MLP效果。
本实例的构建步骤如下:
步骤1:建立工程并导入sklearn包
步骤2:加载训练数据
步骤3:训练神经网络
步骤4:测试集评价
1)创建sklearnBP.py文件
2)在sklearnBP.py文件中导入sklearn相关包
import numpy as np #导入numpy工具包
from os import listdir #使用listdir模块,用于访问本地文件
from sklearn.neural_network import MLPClassifier
1)在sklearnBP.py文件中,定义img2vector函数,将加载的32*32的图片矩阵展开成一列向量
def img2vector(fileName):
retMat = np.zeros([1024],int) #定义返回的矩阵,大小为1*1024
fr = open(fileName) #打开包含32*32大小的数字文件
lines = fr.readlines() #读取文件的所有行
for i in range(32): #遍历文件所有行
for j in range(32): #并将01数字存放在retMat中
retMat[i*32+j] = lines[i][j]
return retMat
2)在sklearnBP.py文件中定义加载训练数据的函数readDataSet,并将样本标签转化为one-hot向量
def readDataSet(path):
fileList = listdir(path) #获取文件夹下的所有文件
numFiles = len(fileList) #统计需要读取的文件的数目
dataSet = np.zeros([numFiles,1024],int) #用于存放所有的数字文件
hwLabels = np.zeros([numFiles,10]) #用于存放对应的one-hot标签
for i in range(numFiles): #遍历所有的文件
filePath = fileList[i] #获取文件名称/路径
digit = int(filePath.split('_')[0]) #通过文件名获取标签
hwLabels[i][digit] = 1.0 #将对应的one-hot标签置1
dataSet[i] = img2vector(path +'/'+filePath) #读取文件内容
return dataSet,hwLabels
3)在sklearnBP.py文件中,调用readDataSet和img2vector函数加载数据,将训练的图片存放在train_dataSet中,对应的标签则存在train_hwLabels中
#read dataSet
train_dataSet, train_hwLabels = readDataSet('trainingDigits')
1)在sklearnBP.py文件中,构建神经网络:设置网络的隐藏层数、各隐藏层神经元个数、激活函数、学习率、优化方法、最大迭代次数。
设置含100个神经元的隐藏层。
hidden_layer_sizes存放的是一个元组,表示第i层隐藏层里神经元的个数
使用logistic激活函数和adam优化方法,并令初始学习率为0.0001
clf = MLPClassifier(hidden_layer_sizes=(100,),
activation='logistic', solver='adam',
learning_rate_init = 0.0001, max_iter=2000)
2)在sklearnBP.py文件中,使用训练数据训练构建好的神经网络fit函数能够根据训练集及对应标签集自动设置多层感知机的输入与输
出层的神经元个数。
例如train_dataSet为n*1024的矩阵,train_hwLabels为n*10的矩阵,则fit函数将MLP的输入层神经元个数设为1024,输出层神经元个数为10:
clf.fit(train_dataSet,train_hwLabels)
1)在sklearnBP.py文件中,加载测试集
dataSet,hwLabels = readDataSet('testDigits')
2)使用训练好的MLP对测试集进行预测,并计算错误率:
res = clf.predict(dataSet) #对测试集进行预测
error_num = 0 #统计预测错误的数目
num = len(dataSet) #测试集的数目
for i in range(num): #遍历预测结果
#比较长度为10的数组,返回包含01的数组,0为不同,1为相同
#若预测结果与真实结果相同,则10个数字全为1,否则不全为1
if np.sum(res[i] == hwLabels[i]) < 10:
error_num += 1
print("Total num:",num," Wrong num:", \
error_num," WrongRate:",error_num / float(num))
运行隐藏层神经元个数为50、100、200的多层感知机,对比实验效果:
随着隐藏层神经元个数的增加,MLP的正确率持上升趋势;
大量的隐藏层神经元带来的计算负担与对结果的提升并不对等,因此,如何选取合适的隐藏神经元个数是一个值得探讨的问题。
我们设隐藏层神经元个数为100,初始学习率为0.0001,最大迭代次数分别为500、1000、1500、2000, 结果如下:
过小的迭代次数可能使得MLP早停,造成较低的正确率。
当最大迭代次数>1000时,正确率基本保持不变,这说明MLP在第1000迭代时已收敛,剩余的迭代次数不再进行。
改用随机梯度下降优化算法即将MLPclassifer的参数( solver=‘sgd’, ),设隐藏层神经元个数为100,最大迭代次数为2000,学习率分别为:0.1、0.01、0.001、0.0001,结果如下:
结论:较小的学习率带来了更低的正确率,这是因为较小学习率无法在2000次迭代内完成收敛,而步长较大的学习率使得MLP在2000次迭代内快速收敛到最优解。因此,较小的学习率一般要配备较大的迭代次数以保证其收敛。