python加载模型_python - 如何在Keras中从HDF5文件加载模型?

在Keras中如何从HDF5文件加载模型?

我试过的保存模型的代码如下:

model = Sequential()

model.add(Dense(64, input_dim=14, init='uniform'))

model.add(LeakyReLU(alpha=0.3))

model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))

model.add(Dropout(0.5))

model.add(Dense(64, init='uniform'))

model.add(LeakyReLU(alpha=0.3))

model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))

model.add(Dropout(0.5))

model.add(Dense(2, init='uniform'))

model.add(Activation('softmax'))

sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='binary_crossentropy', optimizer=sgd)

checkpointer = ModelCheckpoint(filepath="/weights.hdf5", verbose=1, save_best_only=True)

model.fit(X_train, y_train, nb_epoch=20, batch_size=16, show_accuracy=True, validation_split=0.2, verbose = 2, callbacks=[checkpointer])

上面的代码成功将最佳模​​型保存到名为weights.hdf5的文件中。然后,我要加载该模型。下面的代码显示了我的做法:

model2 = Sequential()

model2.load_weights("/Users/Desktop/SquareSpace/weights.hdf5")

这是我得到的错误:

IndexError Traceback (most recent call last)

in ()

1 model2 = Sequential()

----> 2 model2.load_weights("/Users/Desktop/SquareSpace/weights.hdf5")

/Applications/anaconda/lib/python2.7/site-packages/keras/models.pyc in load_weights(self, filepath)

582 g = f['layer_{}'.format(k)]

583 weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]

--> 584 self.layers[k].set_weights(weights)

585 f.close()

586

IndexError: list index out of range

最佳办法

load_weights仅设置网络的权重。在调用load_weights之前,您仍然需要定义其体系结构:

def create_model():

model = Sequential()

model.add(Dense(64, input_dim=14, init='uniform'))

model.add(LeakyReLU(alpha=0.3))

model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))

model.add(Dropout(0.5))

model.add(Dense(64, init='uniform'))

model.add(LeakyReLU(alpha=0.3))

model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))

model.add(Dropout(0.5))

model.add(Dense(2, init='uniform'))

model.add(Activation('softmax'))

return model

def train():

model = create_model()

sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='binary_crossentropy', optimizer=sgd)

checkpointer = ModelCheckpoint(filepath="/tmp/weights.hdf5", verbose=1, save_best_only=True)

model.fit(X_train, y_train, nb_epoch=20, batch_size=16, show_accuracy=True, validation_split=0.2, verbose=2, callbacks=[checkpointer])

def load_trained_model(weights_path):

model = create_model()

model.load_weights(weights_path)

次佳办法

如果您将完整的模型(不仅是权重)存储在HDF5文件中,那么它就很简单了

from keras.models import load_model

model = load_model('model.h5')

第三种办法

请参阅以下示例代码,了解如何构建基本的Keras神经网络模型,保存模型(JSON)&权重(HDF5)并加载它们:

# create model

model = Sequential()

model.add(Dense(X.shape[1], input_dim=X.shape[1], activation='relu')) #Input Layer

model.add(Dense(X.shape[1], activation='relu')) #Hidden Layer

model.add(Dense(output_dim, activation='softmax')) #Output Layer

# Compile & Fit model

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

model.fit(X,Y,nb_epoch=5,batch_size=100,verbose=1)

# serialize model to JSON

model_json = model.to_json()

with open("Data/model.json", "w") as json_file:

json_file.write(simplejson.dumps(simplejson.loads(model_json), indent=4))

# serialize weights to HDF5

model.save_weights("Data/model.h5")

print("Saved model to disk")

# load json and create model

json_file = open('Data/model.json', 'r')

loaded_model_json = json_file.read()

json_file.close()

loaded_model = model_from_json(loaded_model_json)

# load weights into new model

loaded_model.load_weights("Data/model.h5")

print("Loaded model from disk")

# evaluate loaded model on test data

# Define X_test & Y_test data first

loaded_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

score = loaded_model.evaluate(X_test, Y_test, verbose=0)

print ("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100))

参考资料

你可能感兴趣的:(python加载模型)