- (视频演示)基于OpenCV的实时视频跟踪火焰识别软件V1.0源码及exe下载
是刃小木啦~
opencv人工智能计算机视觉
本文介绍了基于OpenCV的实时视频跟踪火焰识别软件,该软件通过先进的图像处理技术实现对实时视频中火焰的检测与跟踪,同时支持导入图片进行火焰识别。主要功能包括相机选择、实时跟踪和图片模式。软件适用于多种场合,用于保障人民生命财产安全。源码及exe文件可通过蓝奏云网盘下载。软件简介《基于OpenCV的实时视频跟踪火焰识别软件》是一款创新的计算机视觉应用软件,旨在通过先进的图像处理技术实现对实时视频中
- OpenCV 100道面试题及参考答案(7万字长文)
大模型大数据攻城狮
大厂面试大厂面经android面试计算机视觉opencv实时互动webrtc
OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频。OpenCV最初由英特尔公司开发,现在由一个开源社区维护和发展。主要功能和用途OpenCV的主要功能包括图像和视频处理、特征提取、目标检测、人脸识别、物体跟踪等。它可以用于各种领域,如机器人技术、医学影像、安全监控、自动驾驶等。在图像
- 使用OpenCV和Python将图像读取为RGB
UixnContext
opencvpython人工智能OpenCV
在计算机视觉和图像处理中,OpenCV是一个广泛使用的开源库,提供了许多功能强大的图像处理工具。其中一个常见的任务是将图像读取为RGB格式,以便进一步处理和分析。在本文中,我将向您展示如何使用OpenCV和Python来实现这个任务。首先,确保您已经安装了OpenCV库。您可以使用以下命令在Python中安装OpenCV:pipinstallopencv-python一旦安装完成,我们可以开始写代
- 人工智能开发趋势
光影少年
人工智能
人工智能开发趋势:未来技术的演进与创新引言人工智能(AI)正在以惊人的速度发展,并在各行各业中发挥越来越重要的作用。从自然语言处理到计算机视觉,从自动化决策到自主学习,AI的发展方向正变得更加智能化、自动化和人性化。本文将探讨当前AI开发的最新趋势,并展望未来的发展方向。1.生成式AI的崛起近年来,生成式AI(如ChatGPT、StableDiffusion、DALL·E)展现出强大的内容创作能力
- 大模型驱动的智能代码生成系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型驱动的智能代码生成系统关键词大模型智能代码生成自然语言处理计算机视觉系统设计与实现摘要本文深入探讨了基于大模型的智能代码生成系统的构建与实现。首先,我们分析了智能代码生成的背景与意义,随后介绍了大模型的基本原理及其在代码生成中的潜力。接着,我们详细阐述了智能代码生成系统的设计与实现过程,包括系统需求分析、架构设计、模型集成与优化等方面。随后,本文通过自然语言处理、计算机视觉和代码生成应用,展
- Python图片识别脚本:从零开始实现图像识别!
Python_trys
python开发语言编程Python入门Python基础Python识别Python学习
包含编程籽料、学习路线图、爬虫代码、安装包等!【点击领取!】图像识别是计算机视觉领域的一个重要应用,Python凭借其丰富的库和工具,成为了实现图像识别的首选语言之一。本文将带你从零开始,使用Python编写一个简单的图片识别脚本。我们将使用OpenCV和TensorFlow来实现这个功能。1.环境准备在开始之前,我们需要安装一些必要的Python库。你可以使用pip来安装这些库:pipinsta
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- 基于OpenCV的Java人脸识别系统设计与实现
小呀白呀兔
javaspringboot
基于OpenCV的Java人脸识别系统设计与实现1.引言随着计算机视觉技术的发展,人脸识别在安全监控、身份验证等领域得到了广泛应用。本文将详细介绍如何使用OpenCV库和Java语言构建一个简单的人脸识别系统。该系统能够从图像中检测人脸,并通过深度学习模型提取特征进行比对,最终输出相似度评分及置信度等级。2.环境搭建为了确保项目顺利运行,请按照以下步骤配置开发环境:安装JDK:确保已安装JavaD
- OpenCV实现在图像中绘制汉字
海上的风浪
opencv人工智能计算机视觉编程
在本文中,我将向您展示如何使用OpenCV库在图像中绘制汉字。OpenCV是一个广泛使用的计算机视觉库,它提供了许多强大的功能,包括图像处理和绘图。首先,我们需要安装OpenCV库。您可以通过在终端或命令提示符中运行以下命令来安装它:pipinstallopencv-python接下来,我们将使用Python编写代码来实现在图像中绘制汉字。请确保您已经安装了Python和OpenCV库。impor
- 【精华推荐】AI大模型学习必逛的十大顶级网站
大模型入门学习
人工智能学习大模型入门llama大模型教程大模型学习大模型
随着人工智能技术的快速发展,AI大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。对于希望深入学习AI大模型的开发者和研究者来说,找到合适的学习资源至关重要。本文将为大家推荐十大必备网站,帮助你更好地理解和应用AI大模型。1.CourseraCoursera是一个在线学习平台,提供各类AI和机器学习课程,包括斯坦福大学的机器学习课程和深度学习专项课程。通过视频讲解
- Python从0到100(十八):面向对象编程应用
是Dream呀
python开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- YOLOv8改进主干RTMDet论文系列:高效涨点的单阶段目标检测器主干
IdfdFsharp
YOLO计算机视觉
近年来,目标检测技术在计算机视觉领域取得了显著的进展。为了提高目标检测器的性能和降低延时,研究人员不断提出新的方法和架构。本文介绍了一篇名为"YOLOv8改进主干RTMDet"的论文系列,该系列通过结合最新的RTMDet论文和采用CSPNeXt主干结构,实现了高性能、低延时的单阶段目标检测器主干。在本论文系列中,作者着重研究了目标检测器主干的改进方法。主干网络在目标检测中扮演着重要的角色,它负责提
- Python项目-基于深度学习的校园人脸识别考勤系统
天天进步2015
Python项目实战python
引言随着人工智能技术的快速发展,深度学习在计算机视觉领域的应用日益广泛。人脸识别作为其中的一个重要分支,已经在安防、金融、教育等多个领域展现出巨大的应用价值。本文将详细介绍如何使用Python和深度学习技术构建一个校园人脸识别考勤系统,该系统能够自动识别学生身份并记录考勤信息,大大提高了考勤效率,减轻了教师的工作负担。系统概述功能特点实时人脸检测与识别:能够从摄像头视频流中实时检测并识别人脸自动考
- 笔记-Python图片处理 (OpenCV-Python )
大白砌墙
笔记pythonopencv
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和MacOS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV-Python是OpenCV的Python的API接口,它拥有OpenCVC++API
- AI创业机遇:垂直领域无限可能
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI创业垂直领域机器学习深度学习自然语言处理计算机视觉无人驾驶1.背景介绍人工智能(AI)正在各行各业掀起一场革命,为创业者带来了前所未有的机遇。垂直领域,即特定行业或细分市场,正在成为AI创业的热门选择。本文将深入探讨AI在垂直领域的应用,并提供实用的指南,帮助读者把握AI创业机遇。2.核心概念与联系2.1AI与垂直领域AI在垂直领域的应用,需要理解AI与垂直领域的关系。AI可以为垂直领域提供智
- DeepSeek人工智能领域的创新先锋与变革力量
CodeJourney.
数据库算法人工智能
在科技飞速发展的时代,人工智能(AI)无疑是最具变革性的力量之一。DeepSeek作为人工智能领域的关键参与者,正以其独特的技术路径和创新理念,深刻影响着行业的发展格局。深入解读相关信息,能让我们更全面地认识DeepSeek在人工智能领域的重要贡献、技术优势、发展战略以及其带来的广泛影响。一、DeepSeek的技术突破与创新(一)核心技术成就DeepSeek在自然语言处理(NLP)和计算机视觉等人
- 深度学习数据集封装-----目标检测篇
科研小天才
深度学习目标检测人工智能
前言在上篇文章中,我们深入探讨了图像分类数据集的制作流程。图像分类作为计算机视觉领域的一个基础任务,通常被认为是最为简单直接的子任务之一。然而,当我们转向目标检测任务时,复杂度便显著提升,尤其是在标注框的处理环节。不同的模型架构往往对标注框的处理方式有着各自独特的要求。以YOLO系列为例,它自有一套成熟且高效的方法来应对这一挑战。鉴于篇幅有限,本文暂不深入展开YOLO的相关内容,感兴趣的读者可以查
- 预训练模型微调与下游任务迁移学习技术
AGI大模型与大数据研究院
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习技术近年来在计算机视觉、自然语言处理等领域取得了飞速发展,这离不开大规模预训练模型的贡献。预训练模型通过在海量数据上的自监督学习,学习到了丰富的特征表示,为下游任务提供了强大的初始化。而对预训练模型进行有效的微调,可以充分利用预训练知识,在有限数据上快速达到出色的性能。此外,迁移学习技术也为模型在不同任务间的知识复用提供了有效途径。本文将详细介绍预训练模型微调与下游任务迁移学习
- 计算机视觉|ConvNeXt:CNN 的复兴,Transformer 的新对手
紫雾凌寒
AI炼金厂#计算机视觉#深度学习机器学习计算机视觉人工智能transformerConvNeXt动态网络神经网络
一、引言在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetworks,简称CNN)长期以来一直是核心技术,自诞生以来,它在图像分类、目标检测、语义分割等诸多任务中都取得了令人瞩目的成果。然而,随着VisionTransformer(ViT)的出现,计算机视觉领域的格局发生了重大变化。ViT通过自注意力机制,打破了传统卷积神经网络的局部感知局限,能够捕捉长距离依赖关系,在图
- 【计算机视觉】手势识别
油泼辣子多加
计算机视觉计算机视觉opencv人工智能
手势识别是计算机视觉领域中的重要方向,通过对摄像机采集的手部相关的图像序列进行分析处理,进而识别其中的手势,手势被识别后用户就可以通过手势来控制设备或者与设备交互。完整的手势识别一般有手的检测和姿态估计、手部跟踪和手势识别等。一、手掌检测importcv2importmediapipeasmp#初始化MediaPipe手部模型mp_hands=mp.solutions.handshands=mp_
- 【Python】OpenCV算法使用案例全解
岱宗夫up
教学opencv计算机视觉人工智能算法
OpenCV算法使用案例全解前言OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,它提供了大量的图像和视频处理功能。从简单的图像滤波到复杂的三维重建,OpenCV涵盖了计算机视觉领域的众多算法。本文将详细介绍OpenCV中常见算法的使用案例,帮助读者更好地理解和应用这些强大的工具。一、图像处理基础(一)滤波操作滤波是图像处理中最基
- An Introduction to Statistical Learning with Applicatio
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介1.1定义统计学习(statisticallearning)是一门研究如何从数据中提取知识并应用于预测、决策或其他目的的一门学科。它是机器学习、数据挖掘、计算机视觉等领域的一个分支,是当前热门的AI方向。1.2特点数据驱动:统计学习倾向于采用结构化的数据——如表格或矩阵形式——作为输入;假设空间少:统计学习通常只考虑一种假设空间,即概率模型或概率分布;模型复杂性
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- 【深度学习】Hopfield网络:模拟联想记忆
T-I-M
深度学习人工智能
Transformer优化,什么是稀疏注意力?Transformer模型自2017年被提出以来,已经成为自然语言处理(NLP)领域的核心架构,并在计算机视觉、语音处理等其他领域也取得了显著的成功。然而,随着模型规模的不断增大和任务复杂性的提升,Transformer的计算成本和内存需求也随之激增。为了解决这一问题,研究者们提出了多种优化方法,其中稀疏注意力(SparseAttention)是一种备
- YOLO在PiscTrace上检测到数据分析
那雨倾城
PiscTraceYOLO计算机视觉视觉检测数据分析信息可视化
在现代计算机视觉领域,实时视频数据的检测与分析对于安全监控、交通管理以及智能制造等领域具有重要意义。YOLO(YouOnlyLookOnce)作为一种高效的目标检测算法,能够在保持高精度的同时实现实时检测。而PiscTrace作为一款集成了OpenCV、MiDaS和YOLO技术的桌面应用,为用户提供了全面的图像与视频流处理解决方案。本文将探讨如何利用YOLO进行实时视频数据检测,并结合PiscTr
- 【深度学习·命运-27】NAS四部曲end-NASNet
华东算法王
深度学习·命运深度学习人工智能
NASNet(NeuralArchitectureSearchNetwork)是由GoogleBrain团队提出的另一种神经架构搜索(NAS)方法,它通过自动化搜索神经网络的结构,找到了具有竞争力的神经网络架构,尤其在计算机视觉任务(如图像分类)中表现非常优秀。NASNet是基于进化算法的架构搜索方法,与其他NAS方法相比,它具有更高的效率,并且能够生成更加优化的网络架构。1.NASNet的背景与
- 2024 最新计算机视觉学习路线(入门篇)_计算机视觉课程主线
m0_60721823
计算机视觉学习人工智能
Python是机器学习项目中最流行的编程语言之一,因为与Java和C++等其他编程语言相比,它简单易读。Python附带了许多可以加快开发速度的库,其中一些重要的库是OpenCV、TensorFlow、PyTorch等,它们专门用于图像处理相关任务。本文旨在向初学者介绍这一领域,为他们提供有关涉及图像的机器学习应用程序背后概念的基本知识,并从高层次的角度深入了解这些库如何在底层协同工作,以便他们在
- 计算机视觉 |解锁视频理解三剑客——TimeSformer
紫雾凌寒
AI炼金厂#计算机视觉#自然语言处理(NPL)计算机视觉深度学习神经网络TimeSformertransformerpythontimesformer
一、引言在当今数字化时代,视频数据呈爆炸式增长,从日常的社交媒体分享到安防监控、医疗影像、自动驾驶等专业领域,视频无处不在。视频理解作为计算机视觉领域的重要研究方向,旨在让计算机能够像人类一样理解视频中的内容,包括识别视频中的物体、动作、场景,以及理解事件的发展过程和语义信息等。这一技术的发展对于实现智能视频分析、视频检索、自动驾驶、智能安防等应用具有至关重要的意义,它能够帮助我们从海量的视频数据
- 基于YOLOv5的无人超市商品检测:食品、饮料、零食与家居用品
深度学习&目标检测实战项目
YOLO目标跟踪深度学习人工智能ui
引言随着人工智能技术的快速发展,尤其是计算机视觉的提升,无人超市的概念逐渐成为现实。在无人超市中,商品的智能化管理和检测是其顺利运行的关键。商品检测不仅要实现高效、准确的物品识别,还要支持多种商品类别的实时检测,以保证购物体验的顺畅与安全。在此背景下,深度学习与目标检测算法,如YOLOv5,成为了实现这一目标的重要工具。YOLOv5作为目前最先进且高效的目标检测算法之一,其应用范围广泛,包括人脸检
- 基于YOLOv5的野生动物检测与监控系统:猫、狗、鸟、猴子、狮子、老虎、象的实时识别与分析
深度学习&目标检测实战项目
YOLO目标跟踪人工智能深度学习ui目标检测机器学习
1.引言随着人工智能技术的飞速发展,尤其是深度学习在计算机视觉领域的突破,目标检测技术已广泛应用于各类场景。从城市交通监控到安防系统,再到野生动物保护和生态监测,目标检测技术为我们提供了实时、精确的解决方案。在众多目标检测算法中,YOLO(YouOnlyLookOnce)系列因其高效性和实时性,已成为解决多类别目标检测任务的首选方法。本文将介绍如何使用YOLOv5进行野生动物检测与监控,包括猫、狗
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分