机器学习模型训练之GPU使用

机器学习模型训练之GPU使用

        • 1.电脑自带GPU
        • 2.kaggle之免费GPU
        • 3.amazon SageMaker Studio Lab

免费GPU使用推荐
深度学习框架由大量神经元组成,它们的计算大多是矩阵运算,这类运算在计算时涉及的数据量较大,但运算形式往往只有加法和乘法,比较简单。我们计算机中的CPU可以支持复杂的逻辑运算,但是CPU的核心数往往较少,运行矩阵运算需要较长的时间,不适合进行深度学习模型的构建。与CPU相反,GPU主要负责图形计算。图形计算同样主要基于矩阵运算,这与我们的深度学习场景不谋而合。根据NVIDIA的统计数据,对于同样的深度学习模型,GPU和CPU的运算速度可以相差数百倍。因此,一个好的GPU平台对深度学习十分重要。

1.电脑自带GPU

示例:Pytorch使用GPU训练,只需修改代码中的几个地方即可。
(1)方法1:通过对网络模型、数据、损失函数这三类变量调用.cuda()来在GPU上进行训练

import time
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# from model import *
# 运用gpu加快运算速度  .cuda()
# 改动以下几个地方:网络模型、数据(输入、标注)、损失函数

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="dataset1",train=True,transform=torchvision.transforms.ToTensor(),
                                         download=True)
test_data = torchvision.datasets.CIFAR10(root="dataset1",train=False,transform=torchvision.transforms.ToTensor(),
                                         download=True)
# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用dataloader 来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

# 创建网络模型
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )

    def forward(self,x):
        x = self.model(x)
        return x
model = Model()
if torch.cuda.is_available():
    model = model.cuda()

# 损失函数
# 交叉熵
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()

# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("logs_train")
start_time = time.time()
for i in range(epoch):
    print("------第{}轮训练开始------".format(i+1))

    # 训练步骤开始
    model.train()
    for data in train_dataloader:
        imgs,targets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets =targets.cuda()
        outputs = model(imgs)
        loss = loss_fn(outputs,targets)
        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step+1
        if total_train_step % 100 ==0:
            end_time = time.time()
            print("训练时长为:{}".format(end_time-start_time))
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    # 测试步骤开始
    model.eval()
    total_test_loss = 0
    total_accuracy = 0
    # 无梯度
    with torch.no_grad():
        for data in test_dataloader:
            if torch.cuda.is_available():
                imgs,targets = data
                imgs = imgs.cuda()
            targets = targets.cuda()
            outputs = model(imgs)
            loss =loss_fn(outputs,targets)
            total_test_loss = total_test_loss+loss.item()
            accuracy = (outputs.argmax(1) ==targets).sum()
            total_accuracy = total_accuracy+accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)

    total_test_step = total_test_step+1

    # 保存模型
    torch.save(model,"model{}.pth".format(i))
    print("模型已保存")
writer.close()

(2)方法2:指定训练设备.to(device)

import time
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 定义训练的设备
device = torch.device("cpu")
# device = torch.device("cuda")
# device = torch.device("cuda:0") 单显卡
# 如果有gpu就运行
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="dataset1",train=True,transform=torchvision.transforms.ToTensor(),
                                         download=True)
test_data = torchvision.datasets.CIFAR10(root="dataset1",train=False,transform=torchvision.transforms.ToTensor(),
                                         download=True)
# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用dataloader 来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

# 创建网络模型
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )

    def forward(self,x):
        x = self.model(x)
        return x
model = Model()
model = model.to(device)

# 损失函数
# 交叉熵
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)

# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("logs_train")
start_time = time.time()
for i in range(epoch):
    print("------第{}轮训练开始------".format(i+1))

    # 训练步骤开始
    model.train()
    for data in train_dataloader:
        imgs,targets = data
        imgs = imgs.to(device)
        targets =targets.to(device)
        outputs = model(imgs)
        loss = loss_fn(outputs,targets)
        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step+1
        if total_train_step % 100 ==0:
            end_time = time.time()
            print("训练时长为:{}".format(end_time-start_time))
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    # 测试步骤开始
    model.eval()
    total_test_loss = 0
    total_accuracy = 0
    # 无梯度
    with torch.no_grad():
        for data in test_dataloader:
            imgs = imgs.to(device)
            targets = targets.to(device)
            targets = targets.cuda()
            outputs = model(imgs)
            loss =loss_fn(outputs,targets)
            total_test_loss = total_test_loss+loss.item()
            accuracy = (outputs.argmax(1) ==targets).sum()
            total_accuracy = total_accuracy+accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)

    total_test_step = total_test_step+1

    # 保存模型
    torch.save(model,"model{}.path".format(i))
    print("模型已保存")
writer.close()

2.kaggle之免费GPU

链接:https://www.kaggle.com/#
(1)注册账号
机器学习模型训练之GPU使用_第1张图片
此处验证时,可能会出现地区不支持。可使用VPN代理,可在Microsoft Edge浏览器中安装Hoxx VPN Proxy插件,打开代理即可使用
机器学习模型训练之GPU使用_第2张图片
(2)登录,create new Notebook

  • 每周约30h免费使用时间

机器学习模型训练之GPU使用_第3张图片
此处通过手机号验证后,可选择使用GPU、TPU
机器学习模型训练之GPU使用_第4张图片

3.amazon SageMaker Studio Lab

链接:https://studiolab.sagemaker.aws/
不需要aws账号,即可使用免费的GPU资源。Studio Lab 为用户提供了所有入门 AI 所需的基础能力,包括 JupyterLab IDE、CPU 和 GPU 模型训练算力以及 15 GB 的永久存储。
(1)进入主页,Request account

(2)完善信息,提交请求,后续收到邮件后验证通过则提交成功【此处验证时,可能会出现地区不支持。可使用VPN代理,可在Microsoft Edge浏览器中安装Hoxx VPN Proxy插件,打开代理即可使用】;
注:该请求是批量处理,可能需要等待1~5天不等,收到注册链接后,注册账号即可。

机器学习模型训练之GPU使用_第5张图片
(3)注册成功后,登录后即可来到使用界面。

  • 有GPU和CPU两种资源
  • GPU每次使用限制为4h,4h使用完后,runtime使用环境会停止,点击stop runtime 会重新开启4h;(CPU为12h)
  • 点击open project即可进行jupyter notebook环境中学习
  • 可拓展学习沐神的《动手学习深度学习》

机器学习模型训练之GPU使用_第6张图片

你可能感兴趣的:(深度学习,软件工具使用小帮手,机器学习,深度学习,pytorch)