main
#include "yolo.h"
#include
#include
#include
using namespace std;
using namespace cv;
using namespace dnn;
int main()
{
string model_path = "./weights/bestGPU.onnx";
//int num_devices = cv::cuda::getCudaEnabledDeviceCount();
//if (num_devices <= 0) {
//cerr << "There is no cuda." << endl;
//return -1;
//}
//else {
//cout << num_devices << endl;
//}
Yolo test;
Net net;
if (test.readModel(net, model_path, true)) {
cout << "read net ok!" << endl;
}
else {
return -1;
}
//生成随机颜色
vector color;
srand(time(0));
for (int i = 0; i < 80; i++) {
int b = rand() % 256;
int g = rand() % 256;
int r = rand() % 256;
color.push_back(Scalar(b, g, r));
}
cv::Mat frame;
cv::VideoCapture capture("1.mp4");
if (!capture.isOpened())
{
std::cerr << "Error opening video file\n";
return -1;
}
int frame_count = 0;
float fps = -1;
int total_frames = 0;
auto start = std::chrono::high_resolution_clock::now();
while (1)
{
capture.read(frame);
if (frame.empty())
{
std::cout << "End of stream\n";
break;
}
vector
yolo.h
#pragma once
#include
#include
#define YOLO_P6 false //是否使用P6模型//
struct Output {
int id; //结果类别id//
float confidence; //结果置信度//
cv::Rect box; //矩形框//
};
class Yolo {
public:
Yolo() {
}
~Yolo() {}
bool readModel(cv::dnn::Net& net, std::string& netPath, bool isCuda);
bool Detect(cv::Mat& SrcImg, cv::dnn::Net& net, std::vector
yolo.cpp
#include"yolo.h"
using namespace std;
using namespace cv;
using namespace cv::dnn;
bool Yolo::readModel(Net& net, string& netPath, bool isCuda = false) {
try {
net = readNet(netPath);
}
catch (const std::exception&) {
return false;
}
//cuda
if (isCuda) {
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
}
//cpu
else {
net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
}
return true;
}
bool Yolo::Detect(Mat& SrcImg, Net& net, vector& output) {
Mat blob;
int col = SrcImg.cols;
int row = SrcImg.rows;
int maxLen = MAX(col, row);
Mat netInputImg = SrcImg.clone();
if (maxLen > 1.2 * col || maxLen > 1.2 * row) {
Mat resizeImg = Mat::zeros(maxLen, maxLen, CV_8UC3);
SrcImg.copyTo(resizeImg(Rect(0, 0, col, row)));
netInputImg = resizeImg;
}
blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(0, 0, 0), true, false);
//如果在其他设置没有问题的情况下但是结果偏差很大,可以尝试下用下面两句语句
//blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(104, 117, 123), true, false);
//blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(114, 114,114), true, false);
net.setInput(blob);
std::vector netOutputImg;
//vector outputLayerName{"345","403", "461","output" };
//net.forward(netOutputImg, outputLayerName[3]); //获取output的输出//
net.forward(netOutputImg, net.getUnconnectedOutLayersNames());//release GPU OK debug GPU ->back to CPU
std::vector classIds;//结果id数组//
std::vector confidences;//结果每个id对应置信度数组//
std::vector boxes;//每个id矩形框//
float ratio_h = (float)netInputImg.rows / netHeight;
float ratio_w = (float)netInputImg.cols / netWidth;
int net_width = className.size() + 5; //输出的网络宽度是类别数+5//
float* pdata = (float*)netOutputImg[0].data;
for (int stride = 0; stride < strideSize; stride++) { //stride
int grid_x = (int)(netWidth / netStride[stride]);
int grid_y = (int)(netHeight / netStride[stride]);
for (int anchor = 0; anchor < 3; anchor++) { //anchors
const float anchor_w = netAnchors[stride][anchor * 2];
const float anchor_h = netAnchors[stride][anchor * 2 + 1];
for (int i = 0; i < grid_y; i++) {
for (int j = 0; j < grid_x; j++) {
float box_score = pdata[4]; ;//获取每一行的box框中含有某个物体的概率//
if (box_score >= boxThreshold) {
cv::Mat scores(1, className.size(), CV_32FC1, pdata + 5);
Point classIdPoint;
double max_class_socre;
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
max_class_socre = (float)max_class_socre;
if (max_class_socre >= classThreshold) {
//rect [x,y,w,h]
float x = pdata[0]; //x//
float y = pdata[1]; //y//
float w = pdata[2]; //w//
float h = pdata[3]; //h//
int left = (x - 0.5 * w) * ratio_w;
int top = (y - 0.5 * h) * ratio_h;
classIds.push_back(classIdPoint.x);
confidences.push_back(max_class_socre * box_score);
boxes.push_back(Rect(left, top, int(w * ratio_w), int(h * ratio_h)));
}
}
pdata += net_width;//下一行//
}
}
}
}
//执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)//
vector nms_result;
NMSBoxes(boxes, confidences, nmsScoreThreshold, nmsThreshold, nms_result);
for (int i = 0; i < nms_result.size(); i++) {
int idx = nms_result[i];
Output result;
result.id = classIds[idx];
result.confidence = confidences[idx];
result.box = boxes[idx];
output.push_back(result);
}
if (output.size())
return true;
else
return false;
}
void Yolo::drawPred(Mat& img, vector result, vector color) {
for (int i = 0; i < result.size(); i++) {
int left, top;
left = result[i].box.x;
top = result[i].box.y;
int color_num = i;
rectangle(img, result[i].box, color[result[i].id], 2, 8);
string label = className[result[i].id] + ":" + to_string(result[i].confidence);
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2);
}
//imshow("1", img);
//imwrite("out.bmp", img);
//waitKey();
//destroyAllWindows();
}