【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别

主要参考两篇:

https://blog.csdn.net/liuxiao214/article/details/83411820

https://www.jianshu.com/p/577af31ced74

0.环境

windows
python3.6
Dlib
numpy==1.14.5
glob
opencv-python==3.4.3.18

安装Dlib参考:https://blog.csdn.net/qq_35975447/article/details/109802787

0.1 文件结构

│  .gitignore
│  faceAlignment.py
│  faceDetect.py
│  faceLandmarks.py
│  faceRecognition.py
│  file.txt
│      
├─data
│  │  test_1988.jpg
│  │  
│  ├─candidate-faces
│  │      liushishi.jpg
│  │      liuyifei.jpg
│  │      tangyan.jpg
│  │      tongliya.jpg
│  │      yangzi.jpg
│  │      zhaoliying.jpg
│  │      
│  └─faces
│          tangyan.jpg
│          zhaoliying.jpg
│          
├─models
│      dlib_face_recognition_resnet_model_v1.dat
│      mmod_human_face_detector.dat
│      shape_predictor_5_face_landmarks.dat
│      shape_predictor_68_face_landmarks.dat
│      
└─results
    ├─alignment
    │      test_1988_0_Align68.jpg
    │      test_1988_1_Align68.jpg
    │      test_1988_2_Align68.jpg
    │      test_1988_3_Align68.jpg
    │      test_1988_4_Align68.jpg
    │      test_1988_5_Align68.jpg
    │      
    ├─detect
    │      test_1988_HOG.jpg
    │      test_1988_MMOD.jpg
    │      
    ├─landmarks
    │      test_1988_5Landmarks.jpg
    │      test_1988_68Landmarks.jpg
    │      
    └─recongnition
            recognition_reslut.txt
            

0.2 模型下载

https://github.com/davisking/dlib-models

0.3 我的代码

https://download.csdn.net/download/qq_35975447/13129563

1.人脸检测两个方法对比

两种方法主要包括:Dlib自带与调用深度学习模型的方法。

1.1 时间

HOG

MMOD

1.437422513961792s

 

106.82666826248169s

1.2 效果

原图:

【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第1张图片

 HOG效果:

【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第2张图片

MMOD效果:

【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第3张图片

1.2 代码

这里代码主要参考第一个链接中的,然后根据Dlib自带与调用深度学习模型的方法,循环执行测试时间,并保存图片到results/detect/目录下:

# encoding:utf-8

import dlib
import cv2
import os
import time

def rect_to_bb(rect): # 获得人脸矩形的坐标信息
    x = rect.left()
    y = rect.top()
    w = rect.right() - x
    h = rect.bottom() - y
    return (x, y, w, h)

def resize(image, width=1200):  # 将待检测的image进行resize
    r = width * 1.0 / image.shape[1]
    dim = (width, int(image.shape[0] * r))
    resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
    return resized

def detect(isHOG=False):
    image_path = "./data/"
    image_file = "test_1988.jpg"
    startTime = time.time()
    if isHOG:
        detector = dlib.get_frontal_face_detector()  # 基于HOG+SVM分类
    else:
        model_path = "./models/mmod_human_face_detector.dat"  # 基于 Maximum-Margin Object Detector 的深度学习人脸检测方案
        detector = dlib.cnn_face_detection_model_v1(model_path)
    image = cv2.imread(image_path + image_file)
    image = resize(image, width=1200)
    # image = resize(image, width=600)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    rects = detector(gray, 1)
    print("{} method, detect spend {}s ".format(("HOG" if isHOG else "MMOD"), time.time()-startTime))
    for (i, rect) in enumerate(rects):
        if isHOG:
            (x, y, w, h) = rect_to_bb(rect)
        else:
            (x, y, w, h) = rect_to_bb(rect.rect)
        cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
        cv2.putText(image, "Face: {}".format(i + 1), (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

    cv2.imshow("Output", image)
    savePath = "./results/detect/"
    if not os.path.exists(savePath):
        os.makedirs(savePath)
    if isHOG:
        saveName = image_file[:-4] + "_HOG.jpg"
    else:
        saveName = image_file[:-4] + "_MMOD.jpg"
    cv2.imwrite(savePath + saveName, image)
    cv2.waitKey(10)

if __name__ == "__main__":
    isHOG = True
    detect(isHOG)
    if isHOG:
        isHOG = not isHOG
        detect(isHOG)

2.人脸关键点检测两种对比

两种主要包括:5个关键点与68关键点。都需要调用模型。

2.1 时间

68Landmarks

5Landmarks

0.011994600296020508s

0.0030002593994140625s

2.2 性能效果

5个landmarks

【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第4张图片

68个landmarks

【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第5张图片

2.3 代码

这里代码主要也是参考第一个链接,分别执行两种方法,然后将结果保存至./results/landmarks/下:

# encoding:utf-8

import dlib
import numpy as np
import cv2
import os
import time

def rect_to_bb(rect): # 获得人脸矩形的坐标信息
    x = rect.left()
    y = rect.top()
    w = rect.right() - x
    h = rect.bottom() - y
    return (x, y, w, h)

def shape_to_np(shape, is68Landmarks=True, dtype="int"): # 将包含68个特征的的shape转换为numpy array格式
    if is68Landmarks:
        landmarkNum = 68
    else:
        landmarkNum = 5
    coords = np.zeros((landmarkNum, 2), dtype=dtype)
    for i in range(0, landmarkNum):
        coords[i] = (shape.part(i).x, shape.part(i).y)
    return coords


def resize(image, width=1200):  # 将待检测的image进行resize
    r = width * 1.0 / image.shape[1]
    dim = (width, int(image.shape[0] * r))
    resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
    return resized

def feature(is68Landmarks=True):
    image_path = "./data/"
    image_file = "test_1988.jpg"
    detector = dlib.get_frontal_face_detector()
    if is68Landmarks:
        predictor = dlib.shape_predictor("./models/shape_predictor_68_face_landmarks.dat")
    else:
        predictor = dlib.shape_predictor("./models/shape_predictor_5_face_landmarks.dat")

    image = cv2.imread(image_path + image_file)
    image = resize(image, width=1200)# 1200
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    rects = detector(gray, 1)
    shapes = []
    startTime = time.time()
    for (i, rect) in enumerate(rects):
        shape = predictor(gray, rect)
        shape = shape_to_np(shape, is68Landmarks)
        shapes.append(shape)
        (x, y, w, h) = rect_to_bb(rect)
        cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
        cv2.putText(image, "Face: {}".format(i + 1), (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    print("{} method, detect spend {}s ".format(("68Landmarks" if is68Landmarks else "5Landmarks"), time.time()-startTime))

    for shape in shapes:
        for (x, y) in shape:
            cv2.circle(image, (x, y), 2, (0, 0, 255), -1)
    cv2.imshow("Output", image)
    savePath = "./results/landmarks/"
    if not os.path.exists(savePath):
        os.makedirs(savePath)
    if is68Landmarks:
        saveName = image_file[:-4] + "_68Landmarks.jpg"
    else:
        saveName = image_file[:-4] + "_5Landmarks.jpg"
    cv2.imwrite(savePath + saveName, image)
    cv2.waitKey(10)

if __name__ == "__main__":
    is68Landmarks = True
    feature(is68Landmarks)
    if is68Landmarks:
        is68Landmarks = not is68Landmarks
        feature(is68Landmarks)

3.人脸对齐

本来这里也要测试两种方法的,但是5个关键点的好像不太好改,就放弃了,不过参考代码还是放在里面了,可以自行删去。

3.1 时间

Alignment

0.04295229911804199s

3.2 效果

由于图太模糊了,挑出几张来:

【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第6张图片【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第7张图片【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第8张图片【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第9张图片

3.3 代码

这里的关键点是根据:

在这里插入图片描述

结果会保存至./results/alignment/:

# encoding:utf-8

import dlib
import cv2
import numpy as np
import math
import os
import time

def rect_to_bb(rect): # 获得人脸矩形的坐标信息
    x = rect.left()
    y = rect.top()
    w = rect.right() - x
    h = rect.bottom() - y
    return (x, y, w, h)

def resize(image, width=1200):  # 将待检测的image进行resize
    r = width * 1.0 / image.shape[1]
    dim = (width, int(image.shape[0] * r))
    resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
    return resized

def face_alignment_68(faces):
    # 使用68点关键点模型,根据关键点信息求解变换矩阵,然后把变换矩阵应用到整个图像上。
    predictor = dlib.shape_predictor("./models/shape_predictor_68_face_landmarks.dat") # 用来预测关键点
    faces_aligned = []
    global startTime
    startTime = time.time()
    for face in faces:
        rec = dlib.rectangle(0,0,face.shape[0],face.shape[1])
        shape = predictor(np.uint8(face),rec) # 注意输入的必须是uint8类型
        order = [36,45,30,48,54] # left eye, right eye, nose, left mouth, right mouth  注意关键点的顺序,这个在网上可以找
        for j in order:
            x = shape.part(j).x
            y = shape.part(j).y
            cv2.circle(face, (x, y), 2, (0, 0, 255), -1)

        eye_center =((shape.part(36).x + shape.part(45).x) * 1./2, # 计算两眼的中心坐标
                      (shape.part(36).y + shape.part(45).y) * 1./2)
        dx = (shape.part(45).x - shape.part(36).x) # note: right - right
        dy = (shape.part(45).y - shape.part(36).y)

        angle = math.atan2(dy,dx) * 180. / math.pi # 计算角度
        RotateMatrix = cv2.getRotationMatrix2D(eye_center, angle, scale=1) # 计算仿射矩阵
        RotImg = cv2.warpAffine(face, RotateMatrix, (face.shape[0], face.shape[1])) # 进行仿射变换,即旋转
        faces_aligned.append(RotImg)
    return faces_aligned


def face_alignment_5(rgb_img, faces):
    startTime = time.time()
    faces_aligned = []
    for face in faces:
        # RotImg = dlib.get_face_chip(rgb_img, face)
        RotImg = dlib.get_face_chip(np.uint8(rgb_img), np.uint8(face))
        # RotImg = dlib.get_face_chip(rgb_img, face, size=224, padding=0.25)
        faces_aligned.append(RotImg)
    return faces_aligned

def demo(isAlignment_5=True):
    image_path = "./data/"
    image_file = "test_1988.jpg"
    im_raw = cv2.imread(image_path + image_file).astype('uint8')

    # detector = dlib.get_frontal_face_detector()
    model_path = "./models/mmod_human_face_detector.dat"  # 基于 Maximum-Margin Object Detector 的深度学习人脸检测方案
    detector = dlib.cnn_face_detection_model_v1(model_path)
    im_raw = resize(im_raw, width=1200)
    gray = cv2.cvtColor(im_raw, cv2.COLOR_BGR2GRAY)
    rects = detector(gray, 1)

    src_faces = []
    for (i, rect) in enumerate(rects):
        (x, y, w, h) = rect_to_bb(rect.rect)
        detect_face = im_raw[y:y+h,x:x+w]
        src_faces.append(detect_face)
        cv2.rectangle(im_raw, (x, y), (x + w, y + h), (0, 255, 0), 2)
        cv2.putText(im_raw, "Face: {}".format(i + 1), (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    if isAlignment_5:
        faces_aligned = face_alignment_5(im_raw, src_faces)
    else:
        faces_aligned = face_alignment_68(src_faces)
    print("{} method, detect spend {}s ".format(("Alignment_5" if isAlignment_5 else "Alignment_68"), time.time()-startTime))

    cv2.imshow("src", im_raw)
    savePath = "./results/alignment/"
    if not os.path.exists(savePath):
        os.makedirs(savePath)
    if isAlignment_5:
        saveName = "_Align5.jpg"
    else:
        saveName = "_Align68.jpg"
    i = 0
    for face in faces_aligned:
        cv2.imshow("det_{}".format(i), face)
        cv2.imwrite(savePath + image_file[:-4] + "_{}".format(i) + saveName, face)
        i = i + 1
    cv2.waitKey(10)

if __name__ == "__main__":
    isAlignment_5 = False
    demo(isAlignment_5)
    if isAlignment_5:
        isAlignment_5 = not isAlignment_5
        demo(isAlignment_5)

4.人脸识别

这个地方的时间花的比较多,主要出现识别不好时,没有沉下心来去分析代码,这里根据参考一中的代码进行了修改,无需人为去设置candidate列表,只需要我们自己将candidate-faces文件夹中的候选人库以可区分的该人命名就好。

4.1 准备过程

(1)候选人库candidate-faces,就是我们去这个库查询,是已知的、且有正确身份的。

【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第10张图片【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第11张图片【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第12张图片【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第13张图片【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第14张图片【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第15张图片

(2)候选人库candidate-faces图片命名:

【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第16张图片

 

 

(3)待查询的faces: 

【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第17张图片 tangyan.jpg

 

【人脸检测】试用python版本Dlib人脸检测、关键点、对齐、识别_第18张图片 zhaoliying.jpg

(4)结果 

Processing file: ./data/candidate-faces\liushishi.jpg
Number of faces detected: 1
Processing file: ./data/candidate-faces\liuyifei.jpg
Number of faces detected: 1
Processing file: ./data/candidate-faces\tangyan.jpg
Number of faces detected: 1
Processing file: ./data/candidate-faces\tongliya.jpg
Number of faces detected: 1
Processing file: ./data/candidate-faces\yangzi.jpg
Number of faces detected: 1
Processing file: ./data/candidate-faces\zhaoliying.jpg
Number of faces detected: 1
c_d :[('tangyan', 0.45614611065543303), ('liushishi', 0.4777414300544273), ('yangzi', 0.520176500668875), ('tongliya', 0.547071465533885), ('zhaoliying', 0.64414064895386), ('liuyifei', 0.669962308077882)]
The person_test--./data/faces/tangyan.jpg is:  tangyan
c_d :[('zhaoliying', 0.4041512584817519), ('liushishi', 0.4681194204229278), ('tangyan', 0.4728928349513442), ('yangzi', 0.47474913579746303), ('tongliya', 0.5446001882500634), ('liuyifei', 0.6104574640831666)]
The person_test--./data/faces/zhaoliying.jpg is:  zhaoliying

4.2 代码

其中结果会存到./results/recongnition/recognition_reslut.txt文件中。

# encoding:utf-8

import dlib
import cv2
import numpy as np
import os, glob


def resize(image, width=1200):  # 将待检测的image进行resize
    r = width * 1.0 / image.shape[1]
    dim = (width, int(image.shape[0] * r))
    resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
    return resized

def rect_to_bb(rect): # 获得人脸矩形的坐标信息
    x = rect.left()
    y = rect.top()
    w = rect.right() - x
    h = rect.bottom() - y
    return (x, y, w, h)

def create_face_space():

    # 对文件夹下的每一个人脸进行:
    # 1.人脸检测
    # 2.关键点检测
    # 3.描述子提取

    # 候选人脸文件夹
    faces_folder_path = "./data/candidate-faces/"
    # 候选人脸描述子list
    descriptors = []
    candidates = []
    for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
        print("Processing file: {}".format(f))
        img = cv2.imread(f)
        # img = resize(img, width=300)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        # 1.人脸检测
        dets = detector(img, 1)
        print("Number of faces detected: {}".format(len(dets)))
        candidate = f.split('\\')[-1][:-4]
        for k, d in enumerate(dets):
            # 2.关键点检测
            shape = sp(img, d)

            # 3.描述子提取,128D向量
            face_descriptor = facerec.compute_face_descriptor(img, shape)

            # 转换为numpy array
            v = np.array(face_descriptor)
            descriptors.append(v)
            candidates.append(candidate)
    return descriptors, candidates


def predict(descriptors, path):
    # 对需识别人脸进行同样处理
    # 提取描述子
    img = cv2.imread(path)
    # img = io.imread(path)
    # img = resize(img, width=300)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    dets = detector(gray, 1)
    dist = []
    if len(dets) == 0:
        pass
    for k, d in enumerate(dets):
        shape = sp(img, d)
        face_descriptor = facerec.compute_face_descriptor(img, shape)
        d_test = np.array(face_descriptor)

        # 计算欧式距离
        for i in descriptors:
            dist_ = np.linalg.norm(i-d_test)
            dist.append(dist_)
            # print(dist)
    return dist

def demo():
    global detector, sp, facerec
    # 加载正脸检测器
    detector = dlib.get_frontal_face_detector()

    # 加载人脸关键点检测器
    sp = dlib.shape_predictor("./models/shape_predictor_68_face_landmarks.dat")

    # 3. 加载人脸识别模型
    facerec = dlib.face_recognition_model_v1("./models/dlib_face_recognition_resnet_model_v1.dat")

    # 提取候选人特征与候选人名单
    descriptors, candidates = create_face_space()
    savePath = "./results/recongnition/"
    if not os.path.exists(savePath):
        os.makedirs(savePath)
    fp = open(savePath + 'recognition_reslut.txt', 'a')
    predict_path = "./data/faces/*.jpg"
    for f in glob.glob(predict_path):
        f = f.replace("\\", '/')
        # print("f :{}".format(f))
        dist = predict(descriptors, f)
        # 候选人和距离组成一个dict
        c_d = dict(zip(candidates, dist))
        if not c_d:
            print(str(c_d) + " is None")
            continue
        cd_sorted = sorted(c_d.items(), key=lambda d:d[1])
        print("c_d :{}".format(cd_sorted))

        print("The person_test--{} is: ".format(f), cd_sorted[0][0])
        fp.write("\nThe person_test--{} is: with similar : {}".format(f, cd_sorted[0][0]))
    fp.close()

if __name__ == "__main__":

    demo()

 参考

1.【Dlib】人脸检测、特征点检测、人脸对齐、人脸识别

2.【Tool】Dlib 接口学习和常见功能介绍

3.dlib-models

4.关键点检测——68点图例

5.Dlib提取人脸特征点(68点,opencv画图)

 

你可能感兴趣的:(python,人脸算法,人脸检测,Dlib,python)