不放回只能用WeightedRandomSampler,其他都是放回取样
只需将权重都设为1(or相同值)
from torch.utils.data import WeightedRandomSampler,DataLoader
a = torch.Tensor([1, 2, 3, 4, 5])
dataloader = DataLoader(dataset=a,
batch_size=4, # 组织成batch大小
sampler=WeightedRandomSampler(torch.ones(a.size()), 20))
for i in dataloader:
print(i)
结果
tensor([1., 5., 1., 2.])
tensor([5., 1., 5., 2.])
tensor([1., 4., 2., 2.])
tensor([4., 5., 4., 3.])
tensor([5., 2., 2., 1.])
参数
Arguments:
weights (sequence) : a sequence of weights, not necessary summing up to one
num_samples (int): number of samples to draw
replacement (bool): if ``True``, samples are drawn with replacement.
If not, they are drawn without replacement, which means that when a
sample index is drawn for a row, it cannot be drawn again for that row.
#emb_pos[5,1600]
for num in [1, 2, 3, 4]:
print('num', num)
emb_pos_ = emb_pos.repeat(num,1)
loader_pos = DataLoader(dataset=emb_pos_,
batch_size=num, # 组织成batch大小
sampler=RandomSampler(emb_pos_))
for i in loader_pos:
print(i.size())
结果
num 1
torch.Size([1, 1600])
torch.Size([1, 1600])
torch.Size([1, 1600])
torch.Size([1, 1600])
torch.Size([1, 1600])
num 2
torch.Size([2, 1600])
torch.Size([2, 1600])
torch.Size([2, 1600])
torch.Size([2, 1600])
torch.Size([2, 1600])
num 3
torch.Size([3, 1600])
torch.Size([3, 1600])
torch.Size([3, 1600])
torch.Size([3, 1600])
torch.Size([3, 1600])
num 4
torch.Size([4, 1600])
torch.Size([4, 1600])
torch.Size([4, 1600])
torch.Size([4, 1600])
torch.Size([4, 1600])