#今日论文推荐# SIGIR 2022 | 港大、武大提出KGCL:基于知识图谱对比学习的推荐系统

#今日论文推荐# SIGIR 2022 | 港大、武大提出KGCL:基于知识图谱对比学习的推荐系统

知识图谱(Knowledge Graphs,KGs)通常包含丰富的实体语义关联,在推荐系统中已被广泛地用作提高用户表征学习质量,以及提升推荐精准度的有效额外信息。在这些知识感知的推荐模型中,知识图谱信息通常包含实体和被推荐物品之间的语义关系。然而,这些推荐算法的成功很大程度上依赖于高质量的知识图谱,并且可能因为以下两个问题而无法学习到高质量的用户和商品表征:
i)Entity 的长尾分布导致基于 KG 的物品表征的监督信号变得稀疏;

上图展示了从三个实际应用数据集中收集到的知识图谱实体的分布情况。在图中, Y 轴代表具有相应曝光数量的实体有多少,与 X 轴上的实体曝光数相对应。很明显,大多数 KG 实体都表现出长尾现象。由于知识图谱 embedding 的 Trans 系列算法需要每个实体有充分的基于三元组(h, r, t)的商品连接信息,从而准确地建模语义转换,并且辅助商品的 embedding 学习。因此,KG 的长尾分布问题给准确捕捉物品的关联性带来了挑战。 ii)实际应用中的知识图谱往往是有噪声的,比如知识图谱的链接中也包含了很多物品和 Entity 之间弱关联甚至不太相关的噪音连接信息。上图中展示了一个新闻推荐任务的例子,新闻的关键实体 Zack Wheeler 是美国职业棒球大联盟中费城人队的一个著名投手。然而,我们可以注意到,Zack Wheeler 与两个同新闻本身语义无关的 "噪音 "实体相连接,即 Smyrna, GA 和 UCL 重建手术。虽然 Zack Wheeler 出生在 Smyrna,而且他之前接受了 UCL 重建手术,但这两个实体与这一体育新闻本身的主题不太相关,从而会造成对该新闻语义学习的偏移。 这样的 KG 稀疏性和噪声问题使得物品之间的实体依赖关系偏离了对其真实特征的反映,这极大地产生了建模上的偏差,阻碍了对用户偏好的准确学习。

论文题目:Knowledge Graph Contrastive Learning for Recommendation
详细解读:https://www.aminer.cn/research_report/62a2a8647cb68b460fcec7c4?download=falseicon-default.png?t=M4ADhttps://www.aminer.cn/research_report/62a2a8647cb68b460fcec7c4?download=false
AMiner链接:https://www.aminer.cn/?f=cs

你可能感兴趣的:(深度学习,transformer,深度学习,计算机视觉)