扩散模型(Diffusion Model)原理与代码解析(二)

扩散模型(Diffusion Model)原理与代码解析(一)
扩散模型(Diffusion Model)原理与代码解析(二)

四、损失函数

我们已经明确了要训练 p Θ ( X t − 1 ∣ X t ) p_{Θ}(X_{t-1}|X_t) pΘ(Xt1Xt),那要怎么确定目标函数呢?有两个很直接的想法,一个是负对数的最大似然概率,即 − log ⁡ p Θ ( X 0 ) -\log p_{Θ}(X_0) logpΘ(X0),另一个是真实分布与预测分布的交叉熵,即 − E q ( X 0 ) log ⁡ p Θ ( X 0 ) -E_{q(X_0)}\log p_{Θ}(X_0) Eq(X0)logpΘ(X0),然而,类似于VAE,由于我们很难对噪声空间进行积分,因此直接优化 − log ⁡ p Θ ( X 0 ) -\log p_{Θ}(X_0) logpΘ(X0) − E q ( X 0 ) log ⁡ p Θ ( X 0 ) -E_{q(X_0)}\log p_{Θ}(X_0) Eq(X0)logpΘ(X0)是很困难的,因此我们不会直接优化它们,而是优化它们的变分上界(Variational Lower Bound) L V L B L_{VLB} LVLB L V L B L_{VLB} LVLB的定义如下: L V L B = E q ( X 0 : T ) [ log ⁡ q ( X 1 : T ∣ X 0 ) p Θ ( X 0 : T ) ] L_{VLB}=E_{q(X_{0:T})}\left[\log\frac{q(X_{1:T}|X_0)}{p_{\Theta}(X_{0:T})}\right] LVLB=Eq(X0:T)[logpΘ(X0:T)q(X1:TX0)]下面证明 L V L B L_{VLB} LVLB − log ⁡ p Θ ( X 0 ) -\log p_{Θ}(X_0) logpΘ(X0) − E q ( X 0 ) log ⁡ p Θ ( X 0 ) -E_{q(X_0)}\log p_{Θ}(X_0) Eq(X0)logpΘ(X0)的上界,即证明 L V L B ≥ − log ⁡ p Θ ( X 0 ) & L V L B ≥ − E q ( X 0 ) log ⁡ p Θ ( X 0 ) L_{VLB} \ge -\log p_{Θ}(X_0) \And L_{VLB} \ge -E_{q(X_0)}\log p_{Θ}(X_0) LVLBlogpΘ(X0)&LVLBEq(X0)logpΘ(X0): − log ⁡ p Θ ( X 0 ) ≤ − log ⁡ p Θ ( X 0 ) + D K L ( q ( X 1 : T ∣ X 0 ) ∣ ∣ p Θ ( X 1 : T ∣ X 0 ) ) ( K L 散 度 大 于 等 于 零 ) = − log ⁡ p Θ ( X 0 ) + E X 1 : T ∼ q ( X 1 : T ∣ X 0 ) ( log ⁡ q ( X 1 : T ∣ X 0 ) p Θ ( X 1 : T ∣ X 0 ) ) = − log ⁡ p Θ ( X 0 ) + E X 1 : T ∼ q ( X 1 : T ∣ X 0 ) ( log ⁡ q ( X 1 : T ∣ X 0 ) p Θ ( X 0 ) p Θ ( X 0 : T ) ) = − log ⁡ p Θ ( X 0 ) + E X 1 : T ∼ q ( X 1 : T ∣ X 0 ) ( log ⁡ q ( X 1 : T ∣ X 0 ) p Θ ( X 0 : T ) + log ⁡ p Θ ( X 0 ) ) = E X 0 : T ∼ q ( X 0 : T ) ( log ⁡ q ( X 1 : T ∣ X 0 ) p Θ ( X 0 : T ) ) = L V L B \begin{aligned}-\log p_{\Theta}(X_0)&\leq-\log p_{\Theta}(X_0)+D_{KL}\left(q(X_{1:T}|X_0)||p_{\Theta}(X_{1:T}|X_0)\right)(KL散度大于等于零)\\&=-\log p_{\Theta}(X_0)+E_{X_{1:T}\sim q(X_{1:T}|X_0)}\left(\log\frac{q(X_{1:T}|X_0)}{p_{\Theta}(X_{1:T}|X_0)}\right)\\&=-\log p_{\Theta}(X_0)+E_{X_{1:T}\sim q(X_{1:T}|X_0)}\left(\log\frac{q(X_{1:T}|X_0)p_{\Theta}(X_0)}{p_{\Theta}(X_{0:T})}\right)\\&=-\log p_{\Theta}(X_0)+E_{X_{1:T}\sim q(X_{1:T}|X_0)}\left(\log\frac{q(X_{1:T}|X_0)}{p_{\Theta}(X_{0:T})}+\log p_{\Theta}(X_0)\right)\\&=E_{X_{0:T}\sim q(X_{0:T})}\left(\log\frac{q(X_{1:T}|X_0)}{p_{\Theta}(X_{0:T})}\right)\\&=L_{VLB}\end{aligned} logpΘ(X0)logpΘ(X0)+DKL(q(X1:TX0)pΘ(X1:TX0))(KL)=logpΘ(X0)+EX1:Tq(X1:TX0)(logpΘ(X1:TX0)q(X1:TX0))=logpΘ(X0)+EX1:Tq(X1:TX0)(logpΘ(X0:T)q(X1:TX0)pΘ(X0))=logpΘ(X0)+EX1:Tq(X1:TX0)(logpΘ(X0:T)q(X1:TX0)+logpΘ(X0))=EX0:Tq(X0:T)(logpΘ(X0:T)q(X1:TX0))=LVLB
L C E = − ∫ q ( X 0 ) log ⁡ p Θ ( X 0 ) d X 0 = − E q ( X 0 ) log ⁡ p Θ ( X 0 ) = − E q ( X 0 ) log ⁡ ( ∫ p Θ ( X 1 : T ∣ X 0 ) p Θ ( X 0 ) d X 1 : T ) = − E q ( X 0 ) log ⁡ ( ∫ p Θ ( X 0 : T ) d X 1 : T ) = − E q ( X 0 ) log ⁡ ( ∫ q ( X 1 : T ∣ X 0 ) p Θ ( X 0 : T ) q ( X 1 : T ∣ X 0 ) d X 1 : T ) = − E q ( X 0 ) log ⁡ ( E q ( X 1 : T ∣ X 0 ) p Θ ( X 0 : T ) q ( X 1 : T ∣ X 0 ) ) ≤ − E q ( X 0 ) ( E q ( X 1 : T ∣ X 0 ) log ⁡ p Θ ( X 0 : T ) q ( X 1 : T ∣ X 0 ) ) = E q ( X 0 : T ) [ log ⁡ q ( X 1 : T ∣ X 0 ) p Θ ( X 0 : T ) ] = L V L B \begin{aligned}L_{CE}&=-\int q(X_0)\log p_{\Theta}(X_0)dX_0\\&=-E_{q(X_0)}\log p_{\Theta}(X_0)\\&=-E_{q(X_0)}\log\left(\int p_{\Theta}(X_{1:T}|X_0)p_{\Theta}(X_0)dX_{1:T}\right)\\&=-E_{q(X_0)}\log\left(\int p_{\Theta}(X_{0:T})dX_{1:T}\right)\\&=-E_{q(X_0)}\log\left(\int q(X_{1:T}|X_0)\frac{p_{\Theta}(X_{0:T})}{q(X_{1:T}|X_0)}dX_{1:T}\right)\\&=-E_{q(X_0)}\log\left(E_{q(X_{1:T}|X_0)}\frac{p_{\Theta}(X_{0:T})}{q(X_{1:T}|X_0)}\right)\\&\leq -E_{q(X_0)}\left(E_{q_({X_{1:T}|X_0})}\log\frac{p_{\Theta}(X_{0:T})}{q(X_{1:T}|X_0)}\right)\\&=E_{q(X_{0:T})}\left[\log\frac{q(X_{1:T}|X_0)}{p_{\Theta}(X_{0:T})}\right]\\&=L_{VLB}\end{aligned} LCE=q(X0)logpΘ(X0)dX0=Eq(X0)logpΘ(X0)=Eq(X0)log(pΘ(X1:TX0)pΘ(X0)dX1:T)=Eq(X0)log(pΘ(X0:T)dX1:T)=Eq(X0)log(q(X1:TX0)q(X1:TX0)pΘ(X0:T)dX1:T)=Eq(X0)log(Eq(X1:TX0)q(X1:TX0)pΘ(X0:T))Eq(X0)(Eq(X1:TX0)logq(X1:TX0)pΘ(X0:T))=Eq(X0:T)[logpΘ(X0:T)q(X1:TX0)]=LVLB至此,证明了 L V L B L_{VLB} LVLB − log ⁡ p Θ ( X 0 ) -\log p_{Θ}(X_0) logpΘ(X0) − E q ( X 0 ) log ⁡ p Θ ( X 0 ) -E_{q(X_0)}\log p_{Θ}(X_0) Eq(X0)logpΘ(X0)的上界。
下面,对 L V L B L_{VLB} LVLB化简: L V L B = E q ( X 0 : T ) [ log ⁡ q ( X 1 : T ∣ X 0 ) p Θ ( X 0 : T ) ] = E q ( X 0 : T ) [ log ⁡ ∏ t = 1 T q ( X t ∣ X t − 1 ) p Θ ( X T ) ∏ t = 1 T p Θ ( X t − 1 ∣ X t ) ] = E q ( X 0 : T ) [ − log ⁡ p Θ ( X T ) + ∑ t = 1 T log ⁡ q ( X t ∣ X t − 1 ) p Θ ( X t − 1 ∣ X t ) ] = E q ( X 0 : T ) [ − log ⁡ p Θ ( X T ) + ∑ t = 2 T log ⁡ q ( X t ∣ X t − 1 ) p Θ ( X t − 1 ∣ X t ) + log ⁡ q ( X 1 ∣ X 0 ) p Θ ( X 0 ∣ X 1 ) ] # ( 第 二 项 分 子 q ( X t ∣ X t − 1 = q ( X t , X t − 1 , X 0 ) q ( X t − 1 , X 0 ) = q ( X t − 1 ∣ X t , X 0 ) q ( X t ∣ X 0 ) q ( X 0 ) q ( X t − 1 , X 0 ) = q ( X t − 1 ∣ X t , X 0 ) q ( X t ∣ X 0 ) q ( X t − 1 ∣ X 0 ) ) = E q ( X 0 : T ) [ − log ⁡ p Θ ( X T ) + ∑ t = 2 T log ⁡ ( q ( X t − 1 ∣ X t X 0 ) p Θ ( X t − 1 ∣ X t ) ∗ q ( X t ∣ X 0 ) q ( X t − 1 ∣ X 0 ) ) + log ⁡ q ( X 1 ∣ X 0 ) p Θ ( X 0 ∣ X 1 ) ] = E q ( X 0 : T ) [ − log ⁡ p Θ ( X T ) + ∑ t = 2 T log ⁡ q ( X t − 1 ∣ X t X 0 ) p Θ ( X t − 1 ∣ X t ) + ∑ t = 2 T log ⁡ q ( X t ∣ X 0 ) q ( X t − 1 ∣ X 0 ) + log ⁡ q ( X 1 ∣ X 0 ) p Θ ( X 0 ∣ X 1 ) ] = E q ( X 0 : T ) [ − log ⁡ p Θ ( X T ) + ∑ t = 2 T log ⁡ q ( X t − 1 ∣ X t X 0 ) p Θ ( X t − 1 ∣ X t ) + log ⁡ q ( X T ∣ X 0 ) q ( X 1 ∣ X 0 ) + log ⁡ q ( X 1 ∣ X 0 ) p Θ ( X 0 ∣ X 1 ) ] = E q ( X 0 : T ) [ − log ⁡ p Θ ( X T ) + ∑ t = 2 T log ⁡ q ( X t − 1 ∣ X t X 0 ) p Θ ( X t − 1 ∣ X t ) + log ⁡ q ( X T ∣ X 0 ) p Θ ( X 0 ∣ X 1 ) ] = E q ( X 0 : T ) [ log ⁡ q ( X T ∣ X 0 ) p Θ ( X T ) + ∑ t = 2 T log ⁡ q ( X t − 1 ∣ X t X 0 ) p Θ ( X t − 1 ∣ X t ) − log ⁡ p Θ ( X 0 ∣ X 1 ) ] = D K L ( q ( X T ∣ X 0 ) ∣ ∣ p Θ ( X T ) ) + ∑ t = 2 T D K L ( q ( X t − 1 ∣ X t X 0 ) ∣ ∣ p Θ ( X t − 1 ∣ X t ) ) − log ⁡ p Θ ( X 0 ∣ X 1 ) = L T + L T − 1 + . . . + L 0 w h e r e : L T = D K L ( q ( X T ∣ X 0 ) ∣ ∣ p Θ ( X T ) ) L t = D K L ( q ( X t ∣ X t + 1 X 0 ) ∣ ∣ p Θ ( X t ∣ X t + 1 ) ) , 1 ≤ t ≤ T L 0 = − log ⁡ p Θ ( X 0 ∣ X 1 ) \begin{aligned}L_{VLB}&= E_{q(X_{0:T})}\left[\log\frac{q(X_{1:T}|X_0)}{p_{Θ}(X_{0:T})}\right]\\&=E_{q(X_{0:T})}\left[\log\frac{\textstyle \prod_{t=1}^{T}q(X_{t}|X_{t-1})}{p_{Θ}(X_{T}){\textstyle \prod_{t=1}^{T}}p_{Θ}(X_{t-1}|X_t)}\right]\\&=E_{q(X_{0:T})}\left[-\log p_{Θ}(X_T)+\sum_{t=1}^{T}\log\frac{q(X_{t}|X_{t-1})}{p_{Θ}(X_{t-1}|X_t)}\right]\\&=E_{q(X_{0:T})}\left[-\log p_{Θ}(X_T)+\sum_{t=2}^{T}\log\frac{q(X_{t}|X_{t-1})}{p_{Θ}(X_{t-1}|X_t)}+\log\frac{q(X_{1}|X_{0})}{p_{Θ}(X_{0}|X_1)}\right] \#(第二项分子q(X_t|X_{t-1}=\frac{q(X_t,X_{t-1},X_0)}{q(X_{t-1},X_0)}=\frac{q(X_{t-1}|X_t,X_0)q(X_t|X_0)q(X_0)}{q(X_{t-1},X_0)}=\frac{q(X_{t-1}|X_t,X_0)q(X_t|X_0)}{q(X_{t-1}|X_0)})\\&=E_{q(X_{0:T})}\left[-\log p_{Θ}(X_T)+\sum_{t=2}^{T}\log\left(\frac{q(X_{t-1}|X_{t}X_0)}{p_{Θ}(X_{t-1}|X_t)}*\frac{q(X_{t}|X_0)}{q(X_{t-1}|X_0)}\right)+\log\frac{q(X_{1}|X_{0})}{p_{Θ}(X_{0}|X_1)}\right]\\&=E_{q(X_{0:T})}\left[-\log p_{Θ}(X_T)+\sum_{t=2}^{T}\log\frac{q(X_{t-1}|X_{t}X_0)}{p_{Θ}(X_{t-1}|X_t)}+\sum_{t=2}^{T}\log\frac{q(X_{t}|X_0)}{q(X_{t-1}|X_0)}+\log\frac{q(X_{1}|X_{0})}{p_{Θ}(X_{0}|X_1)}\right]\\&=E_{q(X_{0:T})}\left[-\log p_{Θ}(X_T)+\sum_{t=2}^{T}\log\frac{q(X_{t-1}|X_{t}X_0)}{p_{Θ}(X_{t-1}|X_t)}+\log\frac{q(X_{T}|X_0)}{q(X_{1}|X_0)}+\log\frac{q(X_{1}|X_{0})}{p_{Θ}(X_{0}|X_1)}\right]\\&=E_{q(X_{0:T})}\left[-\log p_{Θ}(X_T)+\sum_{t=2}^{T}\log\frac{q(X_{t-1}|X_{t}X_0)}{p_{Θ}(X_{t-1}|X_t)}+\log\frac{q(X_{T}|X_0)}{p_{\Theta}(X_{0}|X_1)}\right]\\&=E_{q(X_{0:T})}\left[\log\frac{q(X_T|X_0)}{p_{Θ}(X_T)} +\sum_{t=2}^{T}\log\frac{q(X_{t-1}|X_{t}X_0)}{p_{Θ}(X_{t-1}|X_t)}-\log p_{Θ}(X_{0}|X_1)\right]\\&=D_{KL}(q(X_T|X_0)||p_{Θ}(X_T))+\sum_{t=2}^{T} D_{KL}(q(X_{t-1}|X_tX_0)||p_{Θ}(X_{t-1}|X_t))-\log p_{Θ}(X_{0}|X_1)\\&= L_{T} + L_{T-1} + ...+ L_{0}\\& where: L_{T} = D_{KL}(q(X_T|X_0)||p_{Θ}(X_{T}))\\& L_{t} = D_{KL}(q(X_t|X_{t+1}X_0)||p_{Θ}(X_{t}|X_{t+1})),1 \le t \le T\\& L_{0} = -\log p_{Θ}(X_{0}|X_{1})\end{aligned} LVLB=Eq(X0:T)[logpΘ(X0:T)q(X1:TX0)]=Eq(X0:T)[logpΘ(XT)t=1TpΘ(Xt1Xt)t=1Tq(XtXt1)]=Eq(X0:T)[logpΘ(XT)+t=1TlogpΘ(Xt1Xt)q(XtXt1)]=Eq(X0:T)[logpΘ(XT)+t=2TlogpΘ(Xt1Xt)q(XtXt1)+logpΘ(X0X1)q(X1X0)]#(q(XtXt1=q(Xt1,X0)q(Xt,Xt1,X0)=q(Xt1,X0)q(Xt1Xt,X0)q(XtX0)q(X0)=q(Xt1X0)q(Xt1Xt,X0)q(XtX0))=Eq(X0:T)[logpΘ(XT)+t=2Tlog(pΘ(Xt1Xt)q(Xt1XtX0)q(Xt1X0)q(XtX0))+logpΘ(X0X1)q(X1X0)]=Eq(X0:T)[logpΘ(XT)+t=2TlogpΘ(Xt1Xt)q(Xt1XtX0)+t=2Tlogq(Xt1X0)q(XtX0)+logpΘ(X0X1)q(X1X0)]=Eq(X0:T)[logpΘ(XT)+t=2TlogpΘ(Xt1Xt)q(Xt1XtX0)+logq(X1X0)q(XTX0)+logpΘ(X0X1)q(X1X0)]=Eq(X0:T)[logpΘ(XT)+t=2TlogpΘ(Xt1Xt)q(Xt1XtX0)+logpΘ(X0X1)q(XTX0)]=Eq(X0:T)[logpΘ(XT)q(XTX0)+t=2TlogpΘ(Xt1Xt)q(Xt1XtX0)logpΘ(X0X1)]=DKL(q(XTX0)pΘ(XT))+t=2TDKL(q(Xt1XtX0)pΘ(Xt1Xt))logpΘ(X0X1)=LT+LT1+...+L0where:LT=DKL(q(XTX0)pΘ(XT))Lt=DKL(q(XtXt+1X0)pΘ(XtXt+1)),1tTL0=logpΘ(X0X1) L t L_{t} Lt即可看出,对 p Θ ( X t ∣ X t + 1 ) p_{Θ}(X_{t}|X_{t+1}) pΘ(XtXt+1)的监督就是最小化 p Θ ( X t ∣ X t + 1 ) p_{Θ}(X_{t}|X_{t+1}) pΘ(XtXt+1) q ( X t ∣ X t + 1 X 0 ) q(X_t|X_{t+1}X_0) q(XtXt+1X0)的KL散度。

简单的说,我们的目的是希望学习出一个 p Θ ( X t − 1 ∣ X t ) p_{Θ}(X_{t-1}|X_t) pΘ(Xt1Xt),即能够从噪声图恢复出原图。为了达到这一个目的,我们使用 q ( X t − 1 ∣ X t X 0 ) q(X_{t-1}|X_tX_0) q(Xt1XtX0)来监督 p Θ ( X t − 1 ∣ X t ) p_{Θ}(X_{t-1}|X_t) pΘ(Xt1Xt)进行训练, q ( X t − 1 ∣ X t X 0 ) q(X_{t-1}|X_tX_0) q(Xt1XtX0)是可以用 q ( X t ∣ X 0 ) q(X_t|X_0) q(XtX0) q ( X t ∣ X t − 1 ) q(X_t|X_{t-1}) q(XtXt1)表示的,即 q ( X t − 1 ∣ X t X 0 ) q(X_{t-1}|X_tX_0) q(Xt1XtX0)是已知的。

DDPM论文将 p Θ ( X t − 1 ∣ X t ) = N ( X t − 1 ; μ θ ( X t , t ) , Σ θ ( X t , t ) ) p_{Θ}(X_{t-1}|X_t)=N(X_{t-1};\mu_{\theta}(X_t,t),\Sigma_{\theta}(X_t,t)) pΘ(Xt1Xt)=N(Xt1;μθ(Xt,t),Σθ(Xt,t))中的方差设置为 β t \beta_t βt,所以可学习的参数就只在均值中。对于两个单一变量的高斯分布 p p p q q q而言, K L ( p , q ) = log ⁡ σ 2 σ 1 + σ 1 2 + ( μ 1 − μ 2 ) 2 2 σ 2 2 − 1 2 KL(p,q)=\log\frac{\sigma_2}{\sigma_1}+\frac{\sigma_1^2+(\mu_1-\mu_2)^2}{2\sigma_2^2}-\frac{1}{2} KL(p,q)=logσ1σ2+2σ22σ12+(μ1μ2)221优化式子: ∑ t = 1 T D K L ( q ( X t − 1 ∣ X t X 0 ) ∣ ∣ p Θ ( X t − 1 ∣ X t ) ) \sum_{t=1}^{T} D_{KL}(q(X_{t-1}|X_tX_0)||p_{Θ}(X_{t-1}|X_t)) t=1TDKL(q(Xt1XtX0)pΘ(Xt1Xt))其中, q q q为已知有偏高斯分布, p Θ p_{\Theta} pΘ为所要拟合的分布,由于假设 p Θ p_{\Theta} pΘ的方差为常数,则我们只需逼近 p Θ p_{\Theta} pΘ q q q的均值即可,等价于最小化式子: L o s s = E q ( 1 2 σ t 2 ∣ ∣ μ ˉ t ( X t , X 0 ) − μ θ ( X t , t ) ∣ ∣ 2 ) + C    # ( X t 是 由 X 0 和 噪 声 ϵ 决 定 的 变 量 ) = E X 0 , ϵ ( 1 2 σ t 2 ∣ ∣ μ ˉ t ( X t ( X 0 , ϵ ) , X 0 ) − μ θ ( X t , t ) ∣ ∣ 2 )    # ( 由 于 X t = α ˉ t X 0 + 1 − α ˉ t Z , Z ∼ N ( 0 , I ) , 即 可 求 出 X 0 的 表 达 式 ) = E X 0 , ϵ ( 1 2 σ t 2 ∣ ∣ 1 α t ( X t ( X 0 , ϵ ) − β t 1 − α ˉ t ϵ ) − μ θ ( X t , t ) ∣ ∣ 2 )    # ( 带 入 μ ˉ ( X t , X 0 ) 的 表 达 式 , 上 述 的 X 0 可 不 做 替 换 ) # 作 者 认 为 直 接 预 测 恢 复 的 数 据 效 果 不 好 , 转 而 预 测 噪 声 , 这 个 想 法 有 点 像 预 测 残 差 连 接 中 的 残 差 # 一 个 网 络 输 入 X 0 , α ˉ t , 高 斯 噪 声 ϵ 和 t , 然 后 预 测 高 斯 噪 声 ϵ = E X 0 , ϵ ( 1 2 σ t 2 ∣ ∣ 1 α t ( X t ( X 0 , ϵ ) − β t 1 − α ˉ t ϵ ) − 1 α t ( X t − β t 1 − α ˉ t ϵ θ ( X t , t ) ) ∣ ∣ 2 ) = E X 0 , ϵ ( β t 2 2 σ t 2 α t ( 1 − α ˉ t ) ∣ ∣ ϵ − ϵ θ ( α ˉ t X 0 + 1 − α ˉ t ϵ , t ) ∣ ∣ 2 ) \begin{aligned}Loss&=\mathbb{E}_q\left(\frac{1}{2\sigma_t^2}||\bar{\mu}_t(X_t,X_0)-\mu_{\theta}(X_t,t)||^2\right)+C \space\space\#(X_t是由X_0和噪声\epsilon决定的变量)\\&=\mathbb{E}_{X_0,\epsilon}\left(\frac{1}{2\sigma_t^2}||\bar{\mu}_t(X_t(X_0,\epsilon),X_0)-\mu_{\theta}(X_t,t)||^2\right)\space\space\#(由于X_t=\sqrt{\bar{\alpha}_t}X_0+\sqrt{1-\bar{\alpha}_t}Z,Z\sim N(0,I),即可求出X_0的表达式)\\&=\mathbb{E}_{X_0,\epsilon}\left(\frac{1}{2\sigma_t^2}||\frac{1}{\sqrt{\alpha_t}}(X_t(X_0,\epsilon)-\frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}}\epsilon)-\mu_{\theta}(X_t,t)||^2\right)\space\space\#(带入\bar{\mu}(X_t,X_0)的表达式,上述的X_0可不做替换)\\& \#作者认为直接预测恢复的数据效果不好,转而预测噪声,这个想法有点像预测残差连接中的残差\\& \#一个网络输入X_0,\bar{\alpha}_t,高斯噪声\epsilon和t,然后预测高斯噪声\epsilon\\&=\mathbb{E}_{X_0,\epsilon}\left(\frac{1}{2\sigma_t^2}||\frac{1}{\sqrt{\alpha_t}}(X_t(X_0,\epsilon)-\frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}}\epsilon)-\frac{1}{\sqrt{\alpha_t}}(X_t-\frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}}\epsilon_{\theta}(X_t,t))||^2\right)\\&=\mathbb{E}_{X_0,\epsilon}\left(\frac{\beta_t^2}{2\sigma_t^2\alpha_t(1-\bar{\alpha}_t)}||\epsilon-\epsilon_{\theta}(\sqrt{\bar{\alpha}_t}X_0+\sqrt{1-\bar{\alpha}_t}\epsilon,t)||^2\right)\end{aligned} Loss=Eq(2σt21μˉt(Xt,X0)μθ(Xt,t)2)+C  #(XtX0ϵ)=EX0,ϵ(2σt21μˉt(Xt(X0,ϵ),X0)μθ(Xt,t)2)  #(Xt=αˉt X0+1αˉt Z,ZN(0,I)X0)=EX0,ϵ(2σt21αt 1(Xt(X0,ϵ)1αˉt βtϵ)μθ(Xt,t)2)  #(μˉ(Xt,X0)X0)##X0,αˉt,ϵt,ϵ=EX0,ϵ(2σt21αt 1(Xt(X0,ϵ)1αˉt βtϵ)αt 1(Xt1αˉt βtϵθ(Xt,t))2)=EX0,ϵ(2σt2αt(1αˉt)βt2ϵϵθ(αˉt X0+1αˉt ϵ,t)2)作者在训练时发现,去掉Loss前的系数,可使训练稳定,所以简化后的Loss为 L o s s = E X 0 , ϵ ( ∣ ∣ ϵ − ϵ θ ( α ˉ t X 0 + 1 − α ˉ t ϵ , t ) ∣ ∣ 2 ) Loss=\mathbb{E}_{X_0,\epsilon}\left(||\epsilon-\epsilon_{\theta}(\sqrt{\bar{\alpha}_t}X_0+\sqrt{1-\bar{\alpha}_t}\epsilon,t)||^2\right) Loss=EX0,ϵ(ϵϵθ(αˉt X0+1αˉt ϵ,t)2)拟合出来的均值为 μ θ ( x t , t ) = 1 α t ( X t − β t 1 − α ˉ t ϵ θ ( X t , t ) ) \mu_{\theta}(x_t,t)=\frac{1}{\sqrt{\alpha_t}}\left(X_t-\frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}}\epsilon_{\theta}(X_t,t)\right) μθ(xt,t)=αt 1(Xt1αˉt βtϵθ(Xt,t))可用于采样。

五、训练和采样过程

训练过程:从数据集中采样 x 0 x_0 x0,从均匀分布采样 t t t,可使模型鲁棒,采样噪声,计算 Loss 更新模型。

采样过程:从标准正态分布采样 x T x_T xT,迭代计算 x t − 1 x_{t-1} xt1,已知均值 μ θ ( x t , t ) \mu_\theta(x_t,t) μθ(xt,t)和常数方差 β t \beta_t βt利用参数重整化可计算出 x t − 1 x_{t-1} xt1,直到 x 0 x_0 x0扩散模型(Diffusion Model)原理与代码解析(二)_第1张图片

六、Pytorch示例代码

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_moons
import torch
import torch.nn as nn
from PIL import Image

moons_curve, _ = make_moons(10 ** 4, noise=0.05)
print("shape of moons:", np.shape(moons_curve))

data = moons_curve.T

fig, ax = plt.subplots()
ax.scatter(*data, color='blue', edgecolor='white')
ax.axis('off')
dataset = torch.Tensor(moons_curve).float()

扩散模型(Diffusion Model)原理与代码解析(二)_第2张图片

num_steps = 100  # 扩散100步
# 制定每一步的beta
betas = torch.linspace(-6, 6, num_steps)
betas = torch.sigmoid(betas) * (0.5e-2 - 1e-5) + 1e-5  # 先压缩到0~1,再乘以0.005

# 计算alpha、alpha_prod、alpha_prod_previous、alpha_bar_sqrt等变量的值
alphas = 1 - betas
alphas_prod = torch.cumprod(alphas, 0)
alphas_prod_p = torch.cat([torch.tensor([1]).float(), alphas_prod[:-1]], 0)  # 插入第一个数1,丢掉最后一个数,previous连乘
alphas_bar_sqrt = torch.sqrt(alphas_prod)
one_minus_alphas_bar_log = torch.log(1 - alphas_prod)
one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)

assert alphas.shape == alphas_prod.shape == alphas_prod_p.shape == alphas_bar_sqrt.shape == one_minus_alphas_bar_log.shape == one_minus_alphas_bar_sqrt.shape
print("all the same shape", betas.shape)  # 所有值都是同等维度,且都是常值


# 计算任意时刻的x采样值,基于X_0和重参数化 , 扩散过程
def q_x(X_0, t):
    noise = torch.randn_like(X_0)
    alphas_t = alphas_bar_sqrt[t]
    alphas_1_m_t = one_minus_alphas_bar_sqrt[t]
    return (alphas_t * X_0 + alphas_1_m_t * noise)  # 在X_0的基础上添加噪声


num_shows = 20
fig, axs = plt.subplots(2, 10, figsize=(28, 3))
plt.rc('text', color='black')

# 共有10000个点,每个点包含两个坐标。生成100步中每隔5步加噪声后的图像,最终应该会成为一个各向同性的高斯分布
for i in range(num_shows):
    j = i // 10
    k = i % 10
    q_i = q_x(dataset, torch.tensor([i * num_steps // num_shows]))  # 生成t时刻的采样数据
    axs[j, k].scatter(q_i[:, 0], q_i[:, 1], color='red', edgecolor='white')
    axs[j, k].set_axis_off()
    axs[j, k].set_title('$q(\mathbf{X}_{' + str(i * num_steps // num_shows) + '})$')
fig.show()

扩散模型(Diffusion Model)原理与代码解析(二)_第3张图片

class MLPDiffusion(nn.Module):  # 定义一个 MLP 模型
    def __init__(self, n_steps, num_units=128):
        super(MLPDiffusion, self).__init__()

        self.linears = nn.ModuleList(
            [
                nn.Linear(2, num_units),
                nn.ReLU(),
                nn.Linear(num_units, num_units),
                nn.ReLU(),
                nn.Linear(num_units, num_units),
                nn.ReLU(),
                nn.Linear(num_units, 2),
            ]
        )
        self.step_embeddings = nn.ModuleList(
            [
                nn.Embedding(n_steps, num_units),
                nn.Embedding(n_steps, num_units),
                nn.Embedding(n_steps, num_units),
            ]
        )

    def forward(self, x, t):
        # x = x_0
        for idx, embedding_layer in enumerate(self.step_embeddings):  # 三层
            t_embedding = embedding_layer(t)
            x = self.linears[2 * idx](x)
            x += t_embedding
            x = self.linears[2 * idx + 1](x)

        x = self.linears[-1](x)  # 输出维度与输入一致

        return x


def diffusion_loss_fn(model, x_0, alphas_bar_sqrt, one_minus_alphas_bar_sqrt, n_steps):
    """对任意时刻t进行采样计算loss"""
    batch_size = x_0.shape[0]

    # 对一个batchsize样本生成随机的时刻t
    t = torch.randint(0, n_steps, size=(batch_size // 2,))  # 为了 t 不重复,先采样一半
    t = torch.cat([t, n_steps - 1 - t], dim=0)
    t = t.unsqueeze(-1)

    # x0的系数
    a = alphas_bar_sqrt[t]

    # 随机噪声eps的系数
    aml = one_minus_alphas_bar_sqrt[t]

    # 生成随机噪音eps
    e = torch.randn_like(x_0)

    # 构造模型的输入
    x = x_0 * a + e * aml

    # 送入模型,得到t时刻的随机噪声预测值
    output = model(x, t.squeeze(-1))

    # 与真实噪声一起计算误差,求平均值
    return (e - output).square().mean()


def p_sample_loop(model, shape, n_steps, betas, one_minus_alphas_bar_sqrt):
    """从x[T]恢复x[T-1]、x[T-2]|...x[0]"""
    cur_x = torch.randn(shape)
    x_seq = [cur_x]
    for i in reversed(range(n_steps)):
        cur_x = p_sample(model, cur_x, i, betas, one_minus_alphas_bar_sqrt)
        x_seq.append(cur_x)
    return x_seq


def p_sample(model, x, t, betas, one_minus_alphas_bar_sqrt):
    """从 x_t 开始生成 t-1 时刻的重构值"""
    t = torch.tensor([t])

    coeff = betas[t] / one_minus_alphas_bar_sqrt[t]

    eps_theta = model(x, t)

    mean = (1 / (1 - betas[t]).sqrt()) * (x - (coeff * eps_theta))

    z = torch.randn_like(x)
    sigma_t = betas[t].sqrt()

    sample = mean + sigma_t * z

    return (sample)


# 开始训练模型
seed = 1234
print('Training model...')
batch_size = 128
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
num_epoch = 4001
plt.rc('text', color='blue')

model = MLPDiffusion(num_steps)  # 输出维度是2,输入是x和step
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

for t in range(num_epoch):
    for idx, batch_x in enumerate(dataloader):
        loss = diffusion_loss_fn(model, batch_x, alphas_bar_sqrt, one_minus_alphas_bar_sqrt, num_steps)
        optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)  # 梯度裁剪
        optimizer.step()

    if (t % 100 == 0):
        print(loss)
        x_seq = p_sample_loop(model, dataset.shape, num_steps, betas, one_minus_alphas_bar_sqrt)

        fig, axs = plt.subplots(1, 10, figsize=(28, 3))
        for i in range(1, 11):
            cur_x = x_seq[i * 10].detach()
            axs[i - 1].scatter(cur_x[:, 0], cur_x[:, 1], color='red', edgecolor='white');
            axs[i - 1].set_axis_off();
            axs[i - 1].set_title('$q(\mathbf{x}_{' + str(i * 10) + '})$')
        fig.show()

第0个epoch,100次扩散,每10次输出一次
在这里插入图片描述
第1000个epoch:
在这里插入图片描述
第2000个epoch:
在这里插入图片描述
第3000个epoch:
在这里插入图片描述

# 生成扩散和逆扩散的 GIF
imgs = []
for i in range(100):
    plt.clf()
    q_i = q_x(dataset,torch.tensor([i]))
    plt.scatter(q_i[:,0],q_i[:,1],color='red',edgecolor='white',s=5);
    plt.axis('off');
    
    img_buf = io.BytesIO()
    plt.savefig(img_buf,format='png')
    img = Image.open(img_buf)
    imgs.append(img)
reverse = []
for i in range(100):
    plt.clf()
    cur_x = x_seq[i].detach()
    plt.scatter(cur_x[:,0],cur_x[:,1],color='red',edgecolor='white',s=5);
    plt.axis('off')
    
    img_buf = io.BytesIO()
    plt.savefig(img_buf,format='png')
    img = Image.open(img_buf)
    reverse.append(img)
imgs = imgs + reverse
imgs[0].save("diffusion.gif", format='GIF', append_images=imgs, save_all=True, duration=100, loop=0)

你可能感兴趣的:(机器学习算法,pytorch学习框架,论文阅读笔记,python,算法)