python之OCR文字识别

将图片翻译成文字一般被称为光学文字识别(Optical Character Recognition,OCR)。可以实现OCR 的底层库并不多,目前很多库都是使用共同的几个底层OCR 库,或者是在上面进行定制。

方法一: 使用easyocr模块

easyocr是基于torch的深度学习模块
easyocr安装后调用过程中出现opencv版本不兼容问题,所以放弃此方案。

方法二:通过pytesseract调用tesseract

优点:部署快,轻量级,离线可用,免费
缺点:自带的中文库识别率较低,需要自己建数据进行训练

Tesseract 是一个OCR 库,目前由Google 赞助(Google 也是一家以OCR 和机器学习技术闻名于世的公司)。Tesseract 是目前公认最优秀、最精确的开源OCR 系统。
  除了极高的精确度,Tesseract 也具有很高的灵活性。它可以通过训练识别出任何字体(只要这些字体的风格保持不变就可以),也可以识别出任何Unicode 字符。

Tesseract的安装与使用

python 识别图片上的数字,使用pytesseract库从图像中提取文本,而识别引擎采用 tesseract-ocr

pytesseract是python包装器,它为可执行文件提供了pythonic API。

1、安装必要的包:

pip install pillow
pip install pytesseract

2、安装tesseract-ocr的识别引擎

最新版本下载地址: https://github.com/UB-Mannheim/tesseract/wiki
python之OCR文字识别_第1张图片
或者更多版本的tesseract下载地址:https://digi.bib.uni-mannheim.de/tesseract/
 
  安装完后,需要将Tesseract添加到系统变量中。
  环境变量: 我的电脑 ->属性 -> 高级系统设置 ->环境变量 ->系统变量 ,在 path 中添加 安装路径。
  python之OCR文字识别_第2张图片
并将训练好的模型文件 chi_sim.traineddata 放入该目录中,这样安装就完成了。
 
在命令行 WIN+R 输入cmd :输入 tesseract -v ,出现版本信息,则配置成功。

python之OCR文字识别_第3张图片
tesseract-ocr默认不支持中文识别。支持中文识别.png

python之OCR文字识别_第4张图片

3、解决pytesseract 找不到路径的问题。

在自己安装的pytesseract包中,找到pytesseract.py文件
python之OCR文字识别_第5张图片
打开pytesseract.py文件,修改 tesseract_cmd 的值:tesseract.exe 的安装路径 。
为了避免其他的错误,使用双反斜杠,或者斜杠

python之OCR文字识别_第6张图片

4、简单使用

import pytesseract
from PIL import Image
 
 
if __name__ == '__main__':
    text = pytesseract.image_to_string(Image.open("D:\\test.png"),lang="eng")  
    # 如果你想试试Tesseract识别中文,只需要将代码中的eng改为chi_sim即可
    print(text)

测试图片:
python之OCR文字识别_第7张图片
输出结果:
python之OCR文字识别_第8张图片


用Tesseract可以识别格式规范的文字,主要具有以下特点:

  • 使用一个标准字体(不包含手写体、草书,或者十分“花哨的”字体)
  • 虽然被复印或拍照,字体还是很清晰,没有多余的痕迹或污点
  • 排列整齐,没有歪歪斜斜的字
  • 没有超出图片范围,也没有残缺不全,或紧紧贴在图片的边缘
      下面将给出几个tesseract识别图片中文字的例子。
      首先是E://figures/other/poems.jpg, 输入命令 tesseract E://figures/other/poems.jpg E://figures/other/poems.txt, 则会将poems.jpg中的识别文字写入到poems.txt中,如下图:

在这里插入图片描述
python之OCR文字识别_第9张图片

接着是稍微有点倾斜的文字图片th.jpg,识别情况如下:

python之OCR文字识别_第10张图片

在这里插入图片描述
可以看到识别的情况不如刚才规范字体的好,但是也能识别图片中的大部分字母。
  最后是识别简体中文,需要事先安装简体中文语言包,下载地址为:https://github.com/tesseract-ocr/tessdata/find/master/chi_sim.traineddata ,再讲chi_sim.traineddata放在C:\Program Files (x86)\Tesseract-OCR\tessdata目录下。我们以图片timg.jpg为例:

python之OCR文字识别_第11张图片

输入命令:

tesseract E://figures/other/timg.jpg E://figures/other/timg.txt -l chi_sim

识别结果如下:

python之OCR文字识别_第12张图片

只识别错了一个字,识别率还是不错的。
  最后加一句,Tesseract对于彩色图片的识别效果没有黑白图片的效果好。

pytesseract

pytesseract是Tesseract关于Python的接口,可以使用pip install pytesseract安装。安装完后,就可以使用Python调用Tesseract了,不过,你还需要一个Python的图片处理模块,可以安装pillow.
  输入以下代码,可以实现同上述Tesseract命令一样的效果:

import pytesseract
from PIL import Image

pytesseract.pytesseract.tesseract_cmd = 'C://Program Files (x86)/Tesseract-OCR/tesseract.exe'
text = pytesseract.image_to_string(Image.open('E://figures/other/poems.jpg'))

print(text)

运行结果如下:

python之OCR文字识别_第13张图片

cnocr 第二种 Python 开源识别工具的效果

两个工具的使用方法和对比效果。

安装 cnocr:

pip install cnocr

看到 Successfully installed xxx 则说明安装成功。

如果你只想对图片中的中文进行识别,那么 cnocr 是一个不错的选择,你只需要安装 cnocr 包即可。

但如果你想试试其他语言的OCR识别,Tesseract 是更好的选择。

cnocr 识别图片的中文

cnocr 主要针对的是排版简单的印刷体文字图片,如截图图片,扫描件等。目前内置的文字检测和分行模块无法处理复杂的文字排版定位。

尽管它分别提供了单行识别函数和多行识别函数,但在本人实测下,单行识别函数的效果非常糟糕,或者说要求的条件十分苛刻,基本上连截图的文字都识别不出来。

不过多行识别函数还不错,使用该函数识别的代码如下:

from cnocr import CnOcr

ocr = CnOcr()
res = ocr.ocr('test.png')
print("Predicted Chars:", res)

用于识别这个图片里的文字:

python之OCR文字识别_第14张图片

效果如下:

python之OCR文字识别_第15张图片

如果不是很吹毛求疵,这样的效果已经很不错了。

方法三:调用百度API

优点:使用方便,功能强大
缺点:大量使用需要收费

我自己采用的是调用百度API的方式,下面是我的步骤:
注册百度账号,创建OCR应用可以参考其他教程。
购买后使用python调用方法

方式一: 通过urllib直接调用,替换自己的api_key和secret_key即可

# coding=utf-8

import sys
import json
import base64


# 保证兼容python2以及python3
IS_PY3 = sys.version_info.major == 3
if IS_PY3:
    from urllib.request import urlopen
    from urllib.request import Request
    from urllib.error import URLError
    from urllib.parse import urlencode
    from urllib.parse import quote_plus
else:
    import urllib2
    from urllib import quote_plus
    from urllib2 import urlopen
    from urllib2 import Request
    from urllib2 import URLError
    from urllib import urlencode

# 防止https证书校验不正确
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

API_KEY = 'YsZKG1wha34PlDOPYaIrIIKO'

SECRET_KEY = 'HPRZtdOHrdnnETVsZM2Nx7vbDkMfxrkD'


OCR_URL = "https://aip.baidubce.com/rest/2.0/ocr/v1/accurate_basic"


"""  TOKEN start """
TOKEN_URL = 'https://aip.baidubce.com/oauth/2.0/token'


"""
    获取token
"""
def fetch_token():
    params = {'grant_type': 'client_credentials',
              'client_id': API_KEY,
              'client_secret': SECRET_KEY}
    post_data = urlencode(params)
    if (IS_PY3):
        post_data = post_data.encode('utf-8')
    req = Request(TOKEN_URL, post_data)
    try:
        f = urlopen(req, timeout=5)
        result_str = f.read()
    except URLError as err:
        print(err)
    if (IS_PY3):
        result_str = result_str.decode()


    result = json.loads(result_str)

    if ('access_token' in result.keys() and 'scope' in result.keys()):
        if not 'brain_all_scope' in result['scope'].split(' '):
            print ('please ensure has check the  ability')
            exit()
        return result['access_token']
    else:
        print ('please overwrite the correct API_KEY and SECRET_KEY')
        exit()

"""
    读取文件
"""
def read_file(image_path):
    f = None
    try:
        f = open(image_path, 'rb')
        return f.read()
    except:
        print('read image file fail')
        return None
    finally:
        if f:
            f.close()


"""
    调用远程服务
"""
def request(url, data):
    req = Request(url, data.encode('utf-8'))
    has_error = False
    try:
        f = urlopen(req)
        result_str = f.read()
        if (IS_PY3):
            result_str = result_str.decode()
        return result_str
    except  URLError as err:
        print(err)

if __name__ == '__main__':

    # 获取access token
    token = fetch_token()

    # 拼接通用文字识别高精度url
    image_url = OCR_URL + "?access_token=" + token

    text = ""

    # 读取测试图片
    file_content = read_file('test.jpg')

    # 调用文字识别服务
    result = request(image_url, urlencode({'image': base64.b64encode(file_content)}))

    # 解析返回结果
    result_json = json.loads(result)
    print(result_json)
    for words_result in result_json["words_result"]:
        text = text + words_result["words"]

    # 打印文字
    print(text)


方式二:通过HTTP-SDK模块进行调用

from aip import AipOcr
APP_ID = '25**9878'
API_KEY = 'VGT8y***EBf2O8xNRxyHrPNr'
SECRET_KEY = 'ckDyzG*****N3t0MTgvyYaKUnSl6fSw'

client = AipOcr(APP_ID,API_KEY,SECRET_KEY)


def get_file_content(filePath):
    with open(filePath, 'rb') as fp:
        return fp.read()

image = get_file_content('test.jpg')
res = client.basicGeneral(image)
print(res)
#res = client.basicAccurate(image)
#print(res)

直接识别屏幕指定区域上的文字

from aip import AipOcr
APP_ID = '25**9878'
API_KEY = 'VGT8y***EBf2O8xNRxyHrPNr'
SECRET_KEY = 'ckDyzG*****N3t0MTgvyYaKUnSl6fSw'

client = AipOcr(APP_ID,API_KEY,SECRET_KEY)

from io import BytesIO
from PIL import ImageGrab
out_buffer = BytesIO()
img = ImageGrab.grab((100,200,300,400))
img.save(out_buffer,format='PNG')
res = client.basicGeneral(out_buffer.getvalue())
print(res)

你可能感兴趣的:(Python,python,深度学习,开发语言)