【三维重建】三维重构基础知识、三维数据、重建流程

文章目录

    • 1.在计算机内生成三维信息
      • 三维图像重构:
      • 四个坐标系
        • 坐标系转换
          • 内参矩阵
          • 外参矩阵
      • 图像采集设备的标定方法:
    • 2.相关概念
      • (1)彩色图像和深度图像
      • (2)PCL
      • (3)点云数据(PCD)
    • 3.三维重建流程
      • 3.1 深度图像获取
      • 3.2 预处理
      • 3.3 点云计算
      • 3.4 点云配准
        • (1)粗糙配准
        • SfM问题中的不确定性
        • (2)精细配准
        • (3)全局配准
      • 3.5 数据融合
        • KinectFusion技术
        • TSDF(Truncated Signed Distance Field,截断符号距离场)
      • 3.6 表面生成
    • 常用工具

1.在计算机内生成三维信息

1.使用几何建模软件,通过人机交互生成人为控制下的三维:3DMAX、Maya、AutoCAD、UG

2.获取真实的物体形状:三维重构
【三维重建】三维重构基础知识、三维数据、重建流程_第1张图片

三维图像重构:

摄像机获取图像,对图像分析处理,结合CV知识推导出现实中物体的三维信息

从二维图像到三维空间的重构(模仿生物两只眼睛观察物体产生的深度)

对二维图像中像素点的三维信息的恢复,尤其是深度信息

一般采用两个摄像机,对同一个物体进行采集。

单视图:信息不完全,需要利用经验知识

多视图:类似人的双目定位,相对比较容易

理想:对每个像素点的深度进行恢复

三维矢量图形 代替 三维位图

位图:记录一个个的点位,以像素为单位,放大后图像变得模糊不清

矢量图:不受分辨率影响,适合三维建模,线条顺滑,不逼真,无法产生多彩多变的图像

过程:

图像获取:获取二维,影响因素:光照,相机几何特性

摄像机标定:建立有效的成像模型,求解摄像机的内外参数,结合图像得到在空间中的三维点坐标

特征提取:特征点、特征线、区域。

大多以点为匹配基元,怎么提取与怎么匹配 紧密联系,提取时确认匹配方法

提取算法:

基于方向导数的方法

基于图像亮度对比关系的方法

基于数学形态学的方法

立体匹配:根据提取的特征,建立各个图像之间的对应关系,将同一个物理空间点,在不同的图像中的成像点,一一对应起来。影响因素:光照,噪声,物体特性,摄像机特性

三维重建:利用 匹配结果+摄像机标定的内外参数 进行重建

重构方法:

空间点的重建:最基本

空间直线、空间二次曲线的重建

极线约束法

全像素的三维重建:最理想,测量条件严格,仅限于某一具体对象

空间点的三维重建举例:

【三维重建】三维重构基础知识、三维数据、重建流程_第2张图片

四个坐标系

1.像素坐标系:图像的每个像素点,存储在数组中,在图像左上角定义原点,建立图像坐标系uv,坐标分别对应数组中的存储位置
【三维重建】三维重构基础知识、三维数据、重建流程_第3张图片
2.图像坐标系(ICS):用来表示像素在图像中的物理位置所建立的坐标系,原点一般在中心。上图xy。

3.摄像机坐标系(CCS):如图,XY轴与成像平面坐标系的xy平行,Z轴与光轴平行,垂直于图像,交点为图像的主点,也就是成像平面坐标系的原点。OO‘为焦距。
【三维重建】三维重构基础知识、三维数据、重建流程_第4张图片
4.世界坐标系(WCS):在环境中选择一个参考坐标系,描述的是摄像机和物体的位置。与摄像机坐标系的关系用旋转矩阵R和平移向量t来描述。对应关系如下:
【三维重建】三维重构基础知识、三维数据、重建流程_第5张图片

坐标系转换

记一个点在

世界坐标系(WCS,World Coordinate System)中的坐标为 X w = [ x w , y w , z w ] T X_w=[x_w,y_w,z_w]^T Xw=[xw,yw,zw]T

相机坐标系(CCS,Camera Coordinate System)的坐标为 X c = [ x c , y c , z c ] T X_c=[x_c,y_c,z_c]^T Xc=[xc,yc,zc]T

相机图像中的投影(ICS,Image Coordinate System)中的坐标为 X = [ u , v ] T X=[u,v]^T X=[u,v]T

内参矩阵

表示相机和图像的关系
【三维重建】三维重构基础知识、三维数据、重建流程_第6张图片

外参矩阵

相机和世界的变换

外参矩阵包括平移矩阵t 和 旋转矩阵R
在这里插入图片描述
【三维重建】三维重构基础知识、三维数据、重建流程_第7张图片
R为3x3, t为3x1

因此,结合上面两个,推导出 世界和图像的转换
【三维重建】三维重构基础知识、三维数据、重建流程_第8张图片
【三维重建】三维重构基础知识、三维数据、重建流程_第9张图片

图像采集设备的标定方法:

摄影测量学的传统设备标定方法:17个参数描述二维与三维的约束关系,计算量大,高精度

直接线性变换法:参数少,便于计算

2.相关概念

(1)彩色图像和深度图像

彩色:RGB,像素点存储其亮度

深度:像素点存储该点到相机的距离,深度值

深度值只与该点到摄像机的距离有关,和光照,环境,方向都没有关系。

但是,由于物体表面反射,半透明或透明物体,深色物体,距离超过量程等因素,会造成深度图缺失

利用一张RGB+一张dept,可以补全

(2)PCL

Point Cloud Library 点云库

PCL框架包括很多先进的算法和典型的数据结构,如滤波、分割、配准、识别、追踪、可视化、模型拟合、表面重建等诸多功能

libpcl I/O:完成数据的输入、输出过程,如点云数据的读写;
libpcl filters:完成数据采样、特征提取、参数拟合等过程;
libpcl register:完成深度图像的配准过程,例如迭代最近点算法;
libpcl surface:完成三维模型的表面生成过程,包括三角网格化、表面平滑等。

(3)点云数据(PCD)

扫描资料 以点的形式记录,点可以是 三维坐标、颜色、光照强度等。

点云包括几何信息和非几何信息:

几何信息:(能够被空间变换影响的,点的这部分维度叫做特征)如:点的坐标、曲面法线、法向量、切向量。

非几何信息:(不能被空间变换影响,这部分维度叫做描述子)如:颜色、温度、光照强度。

3.三维重建流程

【三维重建】三维重构基础知识、三维数据、重建流程_第10张图片
比较常见的流程是:
提取图像特征(如SIFT、SURF等)->利用特征将图像计算图像之间的特征匹配->基于匹配的特征进行稀疏重建,得到各个图像的相机位姿和稀疏的特征点云(SfM)->基于相机位姿进行稠密重建,得到稠密点云(PMVS/CMVS)->基于点云重建网格、体素或者纹理

3.1 深度图像获取

同时获取深度图像和彩色图像

3.2 预处理

对深度图像进行去噪和修复(图像增强)

3.3 点云计算

预处理后的图像具有二维信息,像素点的值为深度信息,物体表面到传感器之间的直线距离

根据上面的结果,计算推导出 世界坐标系和图像像素坐标系之间的转换关系

3.4 点云配准

多个不同角度的图片,之间有一些公共部分

为了利用深度图像进行三维重建,需要对图像进行分析,求解各个图片之间的变换参数。

这个配准的过程,以公共部分为基准,把不同时间、角度、光照的多个图像,叠加匹配,到统一的坐标系中。

计算出每个图片相应的 平移向量与旋转矩阵,消除冗余信息

(1)粗糙配准

提取多个图片之间的特征点(特征点可以是:直线、拐点、曲线曲率;自定义符号、旋转图形、轴心)

根据特征方程 初步配准

粗糙配准后,点云和目标点云 将处于同一尺度与参考坐标系内

通过自动 记录坐标,得到粗糙配准的 初始值

算法:SFM(Structure From Motion)

主要用在单目重建,一段时间内获取连续图像,重建三维环境

双目:多个摄像机,拍摄同一时刻的同一物体,也称为静态立体视觉

单目:一个摄像机,但单个图像无法完成,需要一段时间的一系列图像,也称为动态立体视觉

从不同角度拍摄同一物体

固定传感器,旋转物体

旋转传感器,固定物体

单目根据实时性不同,分为 离线重建,在线重建

离线重建:如SFM

在线重建:与SLAM (simultaneous localization and mapping,同步定位与地图绘制)和VO有联系,分为渐进式重建、直接式重建。

渐进式:(深度滤波)利用下一时刻图像,不断融合之前的三维信息

SVO: [https://github.com/uzh-rpg/rpg_svo ](https://github.com/uzh-rpg/rpg_svo (深度滤波在depth_filter.cpp) (深度滤波在depth_filter.cpp里面)

REMODE:https://github.com/uzh-rpg/rpg_open_remode

直接式:(深度融合)利用若干时刻图像,一次性完成一个场景的三维重建。与SFM类似。但计算的图像少,因此实时性高。

SfM指的是给出 n n n 个固定的三维空间点的 m m m 张图像: x i j = P i X j , i = 1 , . . . , m ; j = 1 , . . . , n . x_{ij}=P_iX_j, i=1,...,m;j=1,...,n. xij=PiXj,i=1,...,m;j=1,...,n.
m × n m \times n m×n个对应关系 x i j x_{ij} xij 中估计出 m m m个投影矩阵 P i P_i Pi n n n 个三维空间中的点

SfM问题中的不确定性

如果我们对场景进行一个变换 Q Q Q,同时对相机矩阵进行其逆变换 Q − 1 Q^{-1} Q1,则图像会保持不变:
x = P X = ( P Q − 1 ) ( Q X ) x=PX=(PQ^{-1})(QX) x=PX=(PQ1)(QX)
因而SfM问题中会存在不确定性,通过一些约束可以减小不确定性。
【三维重建】三维重构基础知识、三维数据、重建流程_第11张图片

(2)精细配准

经过粗糙配准,得到变换估计值,作为初始值

不断收敛和迭代 的进行精细配准,达到更加精准

基于最小二乘法 对 误差函数 进行最小化处理,反复迭代,直到均方差误差小于设定阈值

算法:ICP(迭代最近点)、SAA(模拟退火)、GA(遗传算法)

拓展:最小二乘法(最小平方法)(二乘就是平方的意思)

作用:误差估计、不确定度、系统辨识及预测、预报

数学优化技术,通过 最小化误差的平方和 寻找数据的最佳函数匹配

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小

同一组数据,选择不同的 f ( x ) f(x) f(x) ,通过最小二乘法可以得到不一样的拟合曲线,最小二乘法,就是找一个最接近正确的fx

(3)全局配准

使用整幅图像 直接计算转换矩阵。

通过精准配准的结果,进行多帧图像的配准

序列配准:按照一定顺序

同步配准:一次性

减少误差,但消耗内存,时间复杂度也大

3.5 数据融合

配准后的深度信息,仍然是空间中散乱无序 的点云数据,只能展现物体部分信息。

对点云数据进行 融合,获得更加精细的重建模型

KinectFusion技术

以传感器初始位置为原点,构造体积网格,把点云空间,分割为一堆小的立方体,立方体称为:体素(Voxel)

为所有Voxel赋予SDF值(Signed Distance Field,有效距离场),隐式模拟表面

SDF:此Voxel到重建表面的最小距离值。

SDF大于0,表示Voxel在表面前

SDF小于0,表示Voxel在表面后

SDF接近0,表示Voxel贴近表面

高效实时,但可重建的空间范围小,因为需要大量空间存储大量的Voxel

TSDF(Truncated Signed Distance Field,截断符号距离场)

为了解决Voxel占用大量空间的问题。

TSDF方法,只存储 距离真实表面 较近的几层Voxel,而不是所有的

可以大幅度降低KinectFusion的内存消耗,减少模型的冗余点
【三维重建】三维重构基础知识、三维数据、重建流程_第12张图片

3.6 表面生成

构造物体的可视 等值面

常用 体素级方法 直接处理原始的灰度体数据

体素级重建算法:MC(Marching Cube,移动立方体)

http://paulbourke.net/geometry/polygonise/

常用工具

【三维重建】三维重构基础知识、三维数据、重建流程_第13张图片
VisualSFM是一个整合了特征提取、图像匹配、稀疏点云重建、稠密重建(需要单独下载CMVS/PMVS)的软件,,免费但不开源(不能用于商业用途)。基于一系列RGB图像,我们可以得到一个稠密的点云。

PMVS/CMVS用SFM的输出作为输入,利用稀疏的特征点云、图像和对应的相机位姿来重建稠密点云。可以用于商业目的。PMVS指的是将大的点云合理地分割、重建、拼接的过程。

MeshLab是常用的点云、网格显示和处理软件,内置了很多3D重建算法,能够进行基于点云的网格重建、简化等。

COLMAP是一个开源的软件,可以用于商业目的。类似于VisualSFM的前半部分,COLMAP能够用于从图像中得到稀疏特征点云和相机位姿。如果有CUDA的话,COLMAP也能用于稠密点云重建和表面重建。

Bundler是稀疏重建工具,然而效果可能不如VisualSFM

你可能感兴趣的:(计算机视觉/CV,重构,计算机视觉,人工智能)