为了与之前softmax回归 获得的结果进行比较, 我们将继续使用Fashion-MNIST图像分类数据集。
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
将每个图像视为具有784个输入特征 和10个类的简单分类数据集。 首先,我们将实现一个具有单隐藏层的多层感知机, 它包含256个隐藏单元。
ps:这里的输入是一张图片,也就是一个长度为784的行向量,输出是一个长为10的行向量,类别为10.(当然,如果输入不止一个图片,不过是batch_size * 784,整体上的计算不变,最后得到的矩阵只是 batch_size * 10)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(
num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]
def relu(X):
a = torch.zeros_like(X)
return torch.max(X,a)
def net(X):
# 矩阵X的列是784,行根据列自动计算
X = X.reshape((-1,num_inputs))
H = relu(X @ W1 + b1) # @是矩阵乘法的简写
return (H @ W2 + b2)
# 交叉熵自带了softmax了
loss = nn.CrossEntropyLoss()
多层感知机的训练过程与softmax回归的训练过程完全相同。 可以直接调用d2l包的train_ch3函数, 将迭代周期数设置为10,并将学习率设置为0.1.
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
import torch
from torch import nn
from d2l import torch as d2l
与softmax回归的简洁实现相比, 唯一的区别是我们添加了2个全连接层(之前我们只添加了1个全连接层)。 第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数。 第二层是输出层。
net = nn.Sequential(nn.Flatten(),nn.Linear(784,256),nn.ReLU(),
nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight,std = 0.01)
net.apply(init_weights)
训练过程的实现与我们实现softmax回归时完全相同, 这种模块化设计使我们能够将与模型架构有关的内容独立出来。
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)