在本节中,我们实现经典卷积网络LeNet-5,并进行手写体数字识别任务。
手写体数字识别是计算机视觉中最常用的图像分类任务,让计算机识别出给定图片中的手写体数字(0-9共10个数字)。由于手写体风格差异很大,因此手写体数字识别是具有一定难度的任务。
我们采用常用的手写数字识别数据集:MNIST数据集。MNIST数据集是计算机视觉领域的经典入门数据集,包含了60,000个训练样本和10,000个测试样本。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小( 28 × 28 28\times 28 28×28像素)。图12给出了部分样本的示例。
为了节省训练时间,本节选取MNIST数据集的一个子集进行后续实验,数据集的划分为:
MNIST数据集分为train_set、dev_set和test_set三个数据集,每个数据集含两个列表分别存放了图片数据以及标签数据。比如train_set包含:
观察数据集分布情况,代码实现如下:
import struct
import numpy as np
# 读取标签数据集
with open('./MNIST/raw/train-labels-idx1-ubyte', 'rb') as lbpath:
labels_magic, labels_num = struct.unpack('>II', lbpath.read(8))
labels = np.fromfile(lbpath, dtype=np.uint8)
# 读取图片数据集
with open('./MNIST/raw/train-images-idx3-ubyte', 'rb') as imgpath:
images_magic, images_num, rows, cols = struct.unpack('>IIII', imgpath.read(16))
images = np.fromfile(imgpath, dtype=np.uint8).reshape(images_num, rows * cols)
# 打印并观察数据集分布情况
train_images, train_labels = images[:1000], labels[:1000]
dev_images, dev_labels = images[1000:1200], labels[1000:1200]
test_images, test_labels = images[1200:1400], labels[1200:1400]
train_set, dev_set, test_set = [train_images, train_labels], [dev_images, dev_labels], [test_images, test_labels]
print('Length of train/dev/test set:{}/{}/{}'.format(len(train_set[0]), len(dev_set[0]), len(test_set[0])))
代码执行结果:
Length of train/dev/test set:1000/200/200
可视化观察其中的一张样本以及对应的标签,代码如下所示:
import matplotlib.pyplot as plt
from PIL import Image
image, label = train_set[0][0], train_set[1][0]
image, label = np.array(image).astype('float32'), int(label)
# 原始图像数据为长度784的行向量,需要调整为[28,28]大小的图像
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
print("The number in the picture is {}".format(label))
plt.figure(figsize=(5, 5))
plt.imshow(image)
plt.savefig('conv-number5.pdf')
plt.show()
代码执行结果:
The number in the picture is 5
图像分类网络对输入图片的格式、大小有一定的要求,数据输入模型前,需要对数据进行预处理操作,使图片满足网络训练以及预测的需要。本实验主要应用了如下方法:
代码实现如下:
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
# 数据预处理
transforms = Compose([Resize(32), ToTensor(), Normalize(mean=[127.5], std=[127.5])])
将原始的数据集封装为Dataset类,以便DataLoader调用。
import torch
import torch.utils.data as io
class MNIST_dataset(io.Dataset):
def __init__(self, dataset, transforms, mode='train'):
self.mode = mode
self.transforms =transforms
self.dataset = dataset
def __getitem__(self, idx):
# 获取图像和标签
image, label = self.dataset[0][idx], self.dataset[1][idx]
image, label = np.array(image).astype('float32'), int(label)
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
image = self.transforms(image)
return image, label
def __len__(self):
return len(self.dataset[0])
# 固定随机种子
torch.random.manual_seed(0)
# 加载 mnist 数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')
LeNet-5虽然提出的时间比较早,但它是一个非常成功的神经网络模型。基于LeNet-5的手写数字识别系统在20世纪90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5的网络结构如图13所示。
我们使用上面定义的卷积层算子和汇聚层算子构建一个LeNet-5模型。
网络共有7层,包含3个卷积层、2个汇聚层以及2个全连接层的简单卷积神经网络接,受输入图像大小为 32 × 32 = 1 024 32\times 32=1\,024 32×32=1024,输出对应10个类别的得分。 具体实现如下:
import torch.nn.functional as F
class Model_LeNet(nn.Module):
def __init__(self, in_channels, num_classes=10):
super(Model_LeNet, self).__init__()
# 卷积层:输出通道数为6,卷积核大小为5×5
self.conv1 = Conv2D(in_channels=in_channels, out_channels=6, kernel_size=5)
# 汇聚层:汇聚窗口为2×2,步长为2
self.pool2 = Pool2D(size=(2, 2), mode='max', stride=2)
# 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5×5,步长为1
self.conv3 = Conv2D(in_channels=6, out_channels=16, kernel_size=5, stride=1)
# 汇聚层:汇聚窗口为2×2,步长为2
self.pool4 = Pool2D(size=(2, 2), mode='avg', stride=2)
# 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5×5
self.conv5 = Conv2D(in_channels=16, out_channels=120, kernel_size=5, stride=1)
# 全连接层:输入神经元为120,输出神经元为84
self.linear6 = nn.Linear(120, 84)
# 全连接层:输入神经元为84,输出神经元为类别数
self.linear7 = nn.Linear(84, num_classes)
def forward(self, x):
# C1:卷积层+激活函数
output = F.relu(self.conv1(x))
# S2:汇聚层
output = self.pool2(output)
# C3:卷积层+激活函数
output = F.relu(self.conv3(output))
# S4:汇聚层
output = self.pool4(output)
# C5:卷积层+激活函数
output = F.relu(self.conv5(output))
# 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
output = torch.squeeze(output, dim=3)
output = torch.squeeze(output, dim=2)
# F6:全连接层
output = F.relu(self.linear6(output))
# F7:全连接层
output = self.linear7(output)
return output
下面测试一下上面的LeNet-5模型,构造一个形状为 [1,1,32,32] 的输入数据送入网络,观察每一层特征图的形状变化。代码实现如下:
# 这里用np.random创建一个随机数组作为输入数据
inputs = np.random.randn(*[1, 1, 32, 32])
inputs = inputs.astype('float32')
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 通过调用LeNet从基类继承的sublayers()函数,查看LeNet中所包含的子层
model_modules = [layer for layer in model.modules()]
print(model_modules[1:])
x = torch.tensor(inputs)
for item in model_modules[1:]:
# item是LeNet类中的一个子层
# 查看经过子层之后的输出数据形状
try:
x = item(x)
except:
# 如果是最后一个卷积层输出,需要展平后才可以送入全连接层
x = torch.reshape(x, [x.shape[0], -1])
x = item(x)
if len(list(item.parameters())) == 2:
# 查看卷积和全连接层的数据和参数的形状,
# 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数b
print(item, x.shape, list(item.parameters())[0].shape,
list(item.parameters())[1].shape)
else:
# 汇聚层没有参数
print(item, x.shape)
代码执行结果:
[Conv2D(), Pool2D(), Conv2D(), Pool2D(), Conv2D(), Linear(in_features=120, out_features=84, bias=True), Linear(in_features=84, out_features=10, bias=True)]
Conv2D() torch.Size([1, 6, 28, 28]) torch.Size([6, 1, 5, 5]) torch.Size([6, 1])
Pool2D() torch.Size([1, 6, 14, 14])
Conv2D() torch.Size([1, 16, 10, 10]) torch.Size([16, 6, 5, 5]) torch.Size([16, 1])
Pool2D() torch.Size([1, 16, 5, 5])
Conv2D() torch.Size([1, 120, 1, 1]) torch.Size([120, 16, 5, 5]) torch.Size([120, 1])
Linear(in_features=120, out_features=84, bias=True) torch.Size([1, 84]) torch.Size([84, 120]) torch.Size([84])
Linear(in_features=84, out_features=10, bias=True) torch.Size([1, 10]) torch.Size([10, 84]) torch.Size([10])
从输出结果看,
考虑到自定义的Conv2D
和Pool2D
算子中包含多个for
循环,所以运算速度比较慢。飞桨框架中,针对卷积层算子和汇聚层算子进行了速度上的优化,这里基于torch.nn.Conv2d
、torch.nn.MaxPool2d
和torch.nn.AvgPool2d
构建LeNet-5模型,对比与上边实现的模型的运算速度。代码实现如下:
class Torch_LeNet(nn.Module):
def __init__(self, in_channels, num_classes=10):
super(Torch_LeNet, self).__init__()
# 卷积层:输出通道数为6,卷积核大小为5*5
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
# 汇聚层:汇聚窗口为2*2,步长为2
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
# 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5*5
self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
# 汇聚层:汇聚窗口为2*2,步长为2
self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
# 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5*5
self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
# 全连接层:输入神经元为120,输出神经元为84
self.linear6 = nn.Linear(in_features=120, out_features=84)
# 全连接层:输入神经元为84,输出神经元为类别数
self.linear7 = nn.Linear(in_features=84, out_features=num_classes)
def forward(self, x):
# C1:卷积层+激活函数
output = F.relu(self.conv1(x))
# S2:汇聚层
output = self.pool2(output)
# C3:卷积层+激活函数
output = F.relu(self.conv3(output))
# S4:汇聚层
output = self.pool4(output)
# C5:卷积层+激活函数
output = F.relu(self.conv5(output))
# 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
output = torch.squeeze(output, dim=3)
output = torch.squeeze(output, dim=2)
# F6:全连接层
output = F.relu(self.linear6(output))
# F7:全连接层
output = self.linear7(output)
return output
测试两个网络的运算速度。
import time
# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[1, 1, 32, 32])
inputs = inputs.astype('float32')
x = torch.tensor(inputs)
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 创建Torch_LeNet类的实例,指定模型名称和分类的类别数目
torch_model = Torch_LeNet(in_channels=1, num_classes=10)
# 计算Model_LeNet类的运算速度
model_time = 0
for i in range(60):
strat_time = time.time()
out = model(x)
end_time = time.time()
# 预热10次运算,不计入最终速度统计
if i < 10:
continue
model_time += (end_time - strat_time)
avg_model_time = model_time / 50
print('Model_LeNet speed:', avg_model_time, 's')
# 计算Torch_LeNet类的运算速度
torch_model_time = 0
for i in range(60):
strat_time = time.time()
torch_out = torch_model(x)
end_time = time.time()
# 预热10次运算,不计入最终速度统计
if i < 10:
continue
torch_model_time += (end_time - strat_time)
avg_torch_model_time = torch_model_time / 50
print('Torch_LeNet speed:', avg_torch_model_time, 's')
代码执行结果:
Model_LeNet speed: 0.878377799987793 s
Torch_LeNet speed: 0.0004801034927368164 s
这里还可以令两个网络加载同样的权重,测试一下两个网络的输出结果是否一致。
# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[1, 1, 32, 32])
inputs = inputs.astype('float32')
x = torch.tensor(inputs)
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 获取网络的权重
params = model.state_dict()
# 自定义Conv2D算子的bias参数形状为[out_channels, 1]
# torch API中Conv2D算子的bias参数形状为[out_channels]
# 需要进行调整后才可以赋值
for key in params:
if 'bias' in key:
params[key] = params[key].squeeze()
# 创建Torch_LeNet类的实例,指定模型名称和分类的类别数目
torch_model = Torch_LeNet(in_channels=1, num_classes=10)
# 将Model_LeNet的权重参数赋予给Torch_LeNet模型,保持两者一致
torch_model.load_state_dict(params)
# 打印结果保留小数点后6位
torch.set_printoptions(6)
# 计算Model_LeNet的结果
output = model(x)
print('Model_LeNet output: ', output)
# 计算Torch_LeNet的结果
torch_output = torch_model(x)
print('Torch_LeNet output: ', torch_output)
代码执行结果:
Model_LeNet output: tensor([[-72007.750000, -73958.312500, -39047.375000, -70354.000000,
55313.753906, 24012.710938, -18572.982422, -46341.015625,
-52060.746094, -57787.097656]], grad_fn=<AddmmBackward0>)
Torch_LeNet output: tensor([[-72007.781250, -73958.335938, -39047.386719, -70354.039062,
55313.781250, 24012.724609, -18572.986328, -46341.035156,
-52060.757812, -57787.109375]], grad_fn=<AddmmBackward0>)
可以看到,输出结果相差不大。
这里还可以统计一下LeNet-5模型的参数量和计算量。
参数量
按照公式
p a r a m e t e r s = P × D × U × V + P \begin{align} parameters = P \times D \times U \times V + P \end{align} parameters=P×D×U×V+P进行计算,可以得到:
所以,LeNet-5总的参数量为 61706 61706 61706。
在PyTorch中,还可以使用torchsummary.summary
API自动计算参数量。
from torchsummary import summary
summary(torch_model, (1, 32, 32))
代码执行结果:
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 6, 28, 28] 156
MaxPool2d-2 [-1, 6, 14, 14] 0
Conv2d-3 [-1, 16, 10, 10] 2,416
AvgPool2d-4 [-1, 16, 5, 5] 0
Conv2d-5 [-1, 120, 1, 1] 48,120
Linear-6 [-1, 84] 10,164
Linear-7 [-1, 10] 850
================================================================
Total params: 61,706
Trainable params: 61,706
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.06
Params size (MB): 0.24
Estimated Total Size (MB): 0.30
----------------------------------------------------------------
可以看到,结果与公式推导一致。
计算量
按照公式
F L O P s = M ′ × N ′ × P × D × U × V + M ′ × N ′ × P \begin{align} FLOPs=M'\times N'\times P\times D\times U\times V + M'\times N'\times P \end{align} FLOPs=M′×N′×P×D×U×V+M′×N′×P进行计算,可以得到:
所以,LeNet-5总的计算量为 423344 423344 423344。
在PyTorch中,还可以使用torchstat.stat
API自动统计计算量。
from torchstat import stat
stat(torch_model, (1, 32, 32))
代码执行结果:
module name input shape output shape params memory(MB) MAdd Flops MemRead(B) MemWrite(B) duration[%] MemR+W(B)
0 conv1 1 32 32 6 28 28 156.0 0.02 235,200.0 122,304.0 4720.0 18816.0 50.06% 23536.0
1 pool2 6 28 28 6 14 14 0.0 0.00 3,528.0 4,704.0 18816.0 4704.0 49.94% 23520.0
2 conv3 6 14 14 16 10 10 2416.0 0.01 480,000.0 241,600.0 14368.0 6400.0 0.00% 20768.0
3 pool4 16 10 10 16 5 5 0.0 0.00 1,600.0 1,600.0 6400.0 1600.0 0.00% 8000.0
4 conv5 16 5 5 120 1 1 48120.0 0.00 96,000.0 48,120.0 194080.0 480.0 0.00% 194560.0
5 linear6 120 84 10164.0 0.00 20,076.0 10,080.0 41136.0 336.0 0.00% 41472.0
6 linear7 84 10 850.0 0.00 1,670.0 840.0 3736.0 40.0 0.00% 3776.0
total 61706.0 0.03 838,074.0 429,248.0 3736.0 40.0 100.00% 315632.0
=====================================================================================================================================
Total params: 61,706
-------------------------------------------------------------------------------------------------------------------------------------
Total memory: 0.03MB
Total MAdd: 838.07KMAdd
Total Flops: 429.25KFlops
Total MemR+W: 308.23KB
使用交叉熵损失函数,并用随机梯度下降法作为优化器来训练LeNet-5网络。 用RunnerV3在训练集上训练5个epoch,并保存准确率最高的模型作为最佳模型。
import torch.optim as opt
torch.random.manual_seed(100)
# 学习率大小
lr = 0.1
# 批次大小
batch_size = 64
# 加载数据
train_loader = io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = io.DataLoader(dev_dataset, batch_size=batch_size)
test_loader = io.DataLoader(test_dataset, batch_size=batch_size)
# 定义LeNet网络
# 自定义算子实现的LeNet-5
model = Model_LeNet(in_channels=1, num_classes=10)
# PyTorch实现的LeNet-5
# model = Torch_LeNet(in_channels=1, num_classes=10)
# 定义优化器
optimizer = opt.SGD(model.parameters(), lr=lr)
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy(is_logist=True)
# 实例化 RunnerV3 类,并传入训练配置。
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=5, log_steps=log_steps,
eval_steps=eval_steps, save_path="best_model.pdparams")
代码执行结果:
[Train] epoch: 0/5, step: 0/80, loss: 2.29860
[Train] epoch: 0/5, step: 15/80, loss: 2.31052
[Evaluate] dev score: 0.08500, dev loss: 2.30621
[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.08500
[Train] epoch: 1/5, step: 30/80, loss: 2.30723
[Evaluate] dev score: 0.10000, dev loss: 2.30257
[Evaluate] best accuracy performence has been updated: 0.08500 --> 0.10000
[Train] epoch: 2/5, step: 45/80, loss: 2.30510
[Evaluate] dev score: 0.12500, dev loss: 2.29797
[Evaluate] best accuracy performence has been updated: 0.10000 --> 0.12500
[Train] epoch: 3/5, step: 60/80, loss: 2.29647
[Evaluate] dev score: 0.12500, dev loss: 2.29648
[Train] epoch: 4/5, step: 75/80, loss: 2.30547
[Evaluate] dev score: 0.12500, dev loss: 2.29393
[Evaluate] dev score: 0.12500, dev loss: 2.29474
[Train] Training done!
可视化观察训练集与验证集的损失变化情况。
def plot_training_loss_acc(runner, fig_name,
fig_size=(16, 6),
sample_step=20,
loss_legend_loc="upper right",
acc_legend_loc="lower right",
train_color="#e4007f",
dev_color='#f19ec2',
fontsize='large',
train_linestyle="-",
dev_linestyle='--'):
plt.figure(figsize=fig_size)
plt.subplot(1, 2, 1)
train_items = runner.train_step_losses[::sample_step]
train_steps = [x[0] for x in train_items]
train_losses = [x[1] for x in train_items]
plt.plot(train_steps, train_losses, color=train_color, linestyle=train_linestyle, label="Train loss")
if len(runner.dev_losses) > 0:
dev_steps = [x[0] for x in runner.dev_losses]
dev_losses = [x[1] for x in runner.dev_losses]
plt.plot(dev_steps, dev_losses, color=dev_color, linestyle=dev_linestyle, label="Dev loss")
# 绘制坐标轴和图例
plt.ylabel("loss", fontsize=fontsize)
plt.xlabel("step", fontsize=fontsize)
plt.legend(loc=loss_legend_loc, fontsize='x-large')
# 绘制评价准确率变化曲线
if len(runner.dev_scores) > 0:
plt.subplot(1, 2, 2)
plt.plot(dev_steps, runner.dev_scores,
color=dev_color, linestyle=dev_linestyle, label="Dev accuracy")
# 绘制坐标轴和图例
plt.ylabel("score", fontsize=fontsize)
plt.xlabel("step", fontsize=fontsize)
plt.legend(loc=acc_legend_loc, fontsize='x-large')
plt.savefig(fig_name)
plt.show()
plot_training_loss_acc(runner, 'cnn-loss1.pdf')
使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率以及损失变化情况。
# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))
代码执行结果:
[Test] accuracy/loss: 0.1250/2.2954
同样地,我们也可以使用保存好的模型,对测试集中的某一个数据进行模型预测,观察模型效果。
# 获取测试集中第一条数据
X, label = next(iter(test_loader))
logits = runner.predict(X)
# 多分类,使用softmax计算预测概率
pred = F.softmax(logits, dim=1)
# 获取概率最大的类别
pred_class = torch.argmax(pred[1]).numpy()
label = label[2].numpy()
# 输出真实类别与预测类别
print("The true category is {} and the predicted category is {}".format(label, pred_class))
# 可视化图片
plt.figure(figsize=(2, 2))
image, label = test_set[0][1], test_set[1][1]
image = np.array(image).astype('float32')
image = np.reshape(image, [28, 28])
image = Image.fromarray(image.astype('uint8'), mode='L')
plt.imshow(image)
plt.savefig('cnn-number2.pdf')
plt.show()
代码执行结果:
The true category is 6 and the predicted category is 7
使用前馈神经网络实现MNIST识别,与LeNet效果对比。
代码实现如下:
import numpy as np
import torch
import matplotlib.pyplot as plt
from torchvision.datasets import mnist
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
train_batch_size = 64 # 超参数
test_batch_size = 128 # 超参数
learning_rate = 0.01 # 学习率
nums_epoches = 20 # 训练次数
lr = 0.1 # 优化器参数
momentum = 0.5 # 优化器参数
train_dataset = mnist.MNIST('./', train=True, transform=transforms.ToTensor(), target_transform=None, download=True)
test_dataset = mnist.MNIST('./', train=False, transform=transforms.ToTensor(), target_transform=None, download=False)
train_loader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False)
class model(nn.Module):
def __init__(self, in_dim, hidden_1, hidden_2, out_dim):
super(model, self).__init__()
self.layer1 = nn.Sequential(nn.Linear(in_dim, hidden_1, bias=True), nn.BatchNorm1d(hidden_1))
self.layer2 = nn.Sequential(nn.Linear(hidden_1, hidden_2, bias=True), nn.BatchNorm1d(hidden_2))
self.layer3 = nn.Sequential(nn.Linear(hidden_2, out_dim))
def forward(self, x):
# 注意 F 与 nn 下的激活函数使用起来不一样的
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = self.layer3(x)
return x
# 实例化网络
model = model(28 * 28, 300, 100, 10)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
# momentum:动量因子
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
# 开始训练 先定义存储损失函数和准确率的数组
losses = []
acces = []
# 测试用
eval_losses = []
eval_acces = []
for epoch in range(nums_epoches):
# 每次训练先清零
train_loss = 0
train_acc = 0
# 将模型设置为训练模式
model.train()
# 动态学习率
if epoch % 5 == 0:
optimizer.param_groups[0]['lr'] *= 0.1
for img, label in train_loader:
# 例如 img=[64,1,28,28] 做完view()后变为[64,1*28*28]=[64,784]
# 把图片数据格式转换成与网络匹配的格式
img = img.view(img.size(0), -1)
# 前向传播,将图片数据传入模型中
# out输出10维,分别是各数字的概率,即每个类别的得分
out = model(img)
# 这里注意参数out是64*10,label是一维的64
loss = criterion(out, label)
# 反向传播
# optimizer.zero_grad()意思是把梯度置零,也就是把loss关于weight的导数变成0
optimizer.zero_grad()
loss.backward()
# 这个方法会更新所有的参数,一旦梯度被如backward()之类的函数计算好后,我们就可以调用这个函数
optimizer.step()
# 记录误差
train_loss += loss.item()
# 计算分类的准确率,找到概率最大的下标
_, pred = out.max(1)
num_correct = (pred == label).sum().item() # 记录标签正确的个数
acc = num_correct / img.shape[0]
train_acc += acc
losses.append(train_loss / len(train_loader))
acces.append(train_acc / len(train_loader))
eval_loss = 0
eval_acc = 0
model.eval()
for img, label in test_loader:
img = img.view(img.size(0), -1)
out = model(img)
loss = criterion(out, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
eval_loss += loss.item()
_, pred = out.max(1)
num_correct = (pred == label).sum().item()
acc = num_correct / img.shape[0]
eval_acc += acc
eval_losses.append(eval_loss / len(test_loader))
eval_acces.append(eval_acc / len(test_loader))
print('epoch:{},Train Loss:{:.4f},Train Acc:{:.4f},Test Loss:{:.4f},Test Acc:{:.4f}'
.format(epoch, train_loss / len(train_loader), train_acc / len(train_loader),
eval_loss / len(test_loader), eval_acc / len(test_loader)))
plt.title('trainloss')
plt.plot(np.arange(len(losses)), losses)
plt.legend(['Train Loss'], loc='upper right')
# 测试
correct = 0
total = 0
y_predict = []
y_true = []
with torch.no_grad():
for data in test_loader:
input, target = data
input = input.view(input.size(0), -1)
output = model(input) # 输出十个最大值
_, predict = torch.max(output.data, dim=1) # 元组取最大值的下表
#
# print('predict:',predict)
total += target.size(0)
correct += (predict == target).sum().item()
y_predict.extend(predict.tolist())
y_true.extend(target.tolist())
print('正确率:', correct / total)
print('correct:', correct)
代码执行结果:
epoch:0,Train Loss:0.3542,Train Acc:0.9165,Test Loss:0.1266,Test Acc:0.9627
epoch:1,Train Loss:0.1263,Train Acc:0.9657,Test Loss:0.0777,Test Acc:0.9776
epoch:2,Train Loss:0.0862,Train Acc:0.9767,Test Loss:0.0581,Test Acc:0.9827
epoch:3,Train Loss:0.0637,Train Acc:0.9831,Test Loss:0.0464,Test Acc:0.9870
epoch:4,Train Loss:0.0500,Train Acc:0.9870,Test Loss:0.0384,Test Acc:0.9882
epoch:5,Train Loss:0.0357,Train Acc:0.9917,Test Loss:0.0256,Test Acc:0.9949
epoch:6,Train Loss:0.0328,Train Acc:0.9925,Test Loss:0.0259,Test Acc:0.9949
epoch:7,Train Loss:0.0308,Train Acc:0.9937,Test Loss:0.0253,Test Acc:0.9953
epoch:8,Train Loss:0.0297,Train Acc:0.9936,Test Loss:0.0244,Test Acc:0.9954
epoch:9,Train Loss:0.0296,Train Acc:0.9934,Test Loss:0.0239,Test Acc:0.9958
epoch:10,Train Loss:0.0270,Train Acc:0.9949,Test Loss:0.0232,Test Acc:0.9960
epoch:11,Train Loss:0.0280,Train Acc:0.9943,Test Loss:0.0233,Test Acc:0.9959
epoch:12,Train Loss:0.0271,Train Acc:0.9944,Test Loss:0.0226,Test Acc:0.9958
epoch:13,Train Loss:0.0276,Train Acc:0.9940,Test Loss:0.0244,Test Acc:0.9952
epoch:14,Train Loss:0.0272,Train Acc:0.9944,Test Loss:0.0232,Test Acc:0.9958
epoch:15,Train Loss:0.0264,Train Acc:0.9949,Test Loss:0.0242,Test Acc:0.9951
epoch:16,Train Loss:0.0272,Train Acc:0.9947,Test Loss:0.0230,Test Acc:0.9956
epoch:17,Train Loss:0.0271,Train Acc:0.9948,Test Loss:0.0229,Test Acc:0.9960
epoch:18,Train Loss:0.0268,Train Acc:0.9948,Test Loss:0.0233,Test Acc:0.9957
epoch:19,Train Loss:0.0271,Train Acc:0.9946,Test Loss:0.0234,Test Acc:0.9959
正确率: 0.996
correct: 9960
执行代码后得到下图:
前馈神经网络运行结果比卷积神经网络要好,前馈神经网络的运行速度低于卷积神经网络。
上面的运行结果明显和paddlepaddle运行得到的结果差异很大。
为什么?
改一下PyTorch代码:
# 数据预处理
transforms = Compose([Resize(32), ToTensor(), Normalize(mean=[0.5], std=[0.5])])
# 学习率
lr = 0.45
代码执行结果:
···
[Train] epoch: 0/5, step: 0/80, loss: 2.30833
[Train] epoch: 0/5, step: 15/80, loss: 2.30816
[Evaluate] dev score: 0.39500, dev loss: 2.27583
[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.39500
[Train] epoch: 1/5, step: 30/80, loss: 2.12486
[Evaluate] dev score: 0.39000, dev loss: 1.95682
[Train] epoch: 2/5, step: 45/80, loss: 2.17857
[Evaluate] dev score: 0.34000, dev loss: 2.01130
[Train] epoch: 3/5, step: 60/80, loss: 1.35790
[Evaluate] dev score: 0.55000, dev loss: 1.36803
[Evaluate] best accuracy performence has been updated: 0.39500 --> 0.55000
[Train] epoch: 4/5, step: 75/80, loss: 0.61455
[Evaluate] dev score: 0.75000, dev loss: 0.79454
[Evaluate] best accuracy performence has been updated: 0.55000 --> 0.75000
[Evaluate] dev score: 0.76500, dev loss: 0.72680
[Evaluate] best accuracy performence has been updated: 0.75000 --> 0.76500
[Train] Training done!
[Test] accuracy/loss: 0.7350/0.7020
The true category is 6 and the predicted category is 6