问 题:有不少刚学YOLOv5算法的朋友,不知道如何更好的用自己的数据集进行训练,用官方默认的方法,改进项目或者运行其他的项目,需要将整个数据集重复复制到新项目中,数据集小还好,但是如果数据集过大将会造成较大的数据冗余。今天就更新一下我的方法,可以将项目和数据集进行分割开来,这样能比较灵活。
方 法:
首先生成train.txt,val.txt,test.txt
# -*- codeing = utf-8 -*-
# @Time : 2021/9/30 10:21
# @Auther : zqk
# @File : voc_labelhrsc.py
# @Software: PyCharm
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val', 'test']
classes = ["airplane","airport","baseballfield","basketballcourt","bridge","chimney","dam","expresswayservicearea",
"expresswaytollstation","golfcourse","groundtrackfield","harbor","overpass","ship","stadium","storagetank",
"tenniscourt","trainstation","vehicle","windmill"] # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open('ZQK_data/Annotations/%s.xml' % (image_id), encoding='UTF-8')
out_file = open('ZQK_data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
# if not os.path.exists(''):
# os.makedirs('data/labels/')
image_ids = open('RSOD/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
list_file = open('RSOD/ImageSets/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write(abs_path + '/RSOD/JPEGImages/%s.jpg\n' % (image_id))
# convert_annotation(image_id)
list_file.close()
然后,创建数据data.yaml文件,索引到对应生成的txt下面。
train: D:\AI\widerperson\labels\train2021\ImageSets\train.txt # 80遥感舰船
val: D:\AI\widerperson\labels\train2021\ImageSets\val.txt # 8遥感舰船
test: D:\AI\widerperson\labels\train2021\ImageSets\test.txt
最后,希望能互粉一下,做个朋友,一起学习交流。