torch api
目录
矩阵相乘 torch.mm
矩阵相乘 torch.matmul
emb table lookup
torch.cat((a,b), dim=-1)表示按倒数第一维cat
import torch
torch.__version__ # '1.3.1'
a = torch.randn(2,3)
b = torch.randn(3,2)
a
tensor([[ 0.5496, 0.6146, -0.4678],
[ 0.2285, -0.8506, -0.7809]])
b
tensor([[ 1.6438, -0.7533],
[-0.3179, -0.0761],
[ 0.2346, -0.3628]])
c = torch.mm(a,b)
print(c)
tensor([[ 0.5983, -0.2911],
[ 0.4628, 0.1759]])
print(c.shape)
torch.Size([2, 2])
d = torch.matmul(a,b)
print(d)
tensor([[ 0.5983, -0.2911],
[ 0.4628, 0.1759]])
print(d.shape)
torch.Size([2, 2])
hidden_units= [256, 128, 64]
### python 基础用法
# 从index=0至倒数第一列的前一个值
hidden_units[:-1]
[256, 128]
# 从index=1至最后一个值
hidden_units[1:]
[128, 64]
hidden_units.insert(0, 13)
hidden_units
[13, 256, 128, 64]
# zip
zip(hidden_units[:-1], hidden_units[1:])
#
zip([256, 128], [128, 64])
for layer in list(zip(hidden_units[:-1], hidden_units[1:])):
print("layer", layer)
for linear in layer:
print("linear", linear)
layer (256, 128)
linear 256
linear 128
layer (128, 64)
linear 128
linear 64
# zip 还是不太明白
初始化emb矩阵,shape=(5,4)。
取emb矩阵中拿对应的 [1, 2, 3],index=1,2,3的行。
embedding = nn.Embedding(5, 4) # 假定字典中只有5个词,词向量维度为4
embedding
Embedding(5, 4)
word = [[1, 2, 3],
[2, 3, 4]] # 每个数字代表一个词,例如 {'!':0,'how':1, 'are':2, 'you':3, 'ok':4}
#而且这些数字的范围只能在0~4之间,因为上面定义了只有5个词
torch.LongTensor(word)
tensor([[1, 2, 3],
[2, 3, 4]])
embed = embedding(torch.LongTensor(word))
embed
tensor([[[ 0.2270, -1.3801, 0.4612, -0.0465],
[-1.0791, -0.6831, 0.7300, 1.9376],
[-0.2408, -0.8692, 1.4777, 0.9520]],
[[-1.0791, -0.6831, 0.7300, 1.9376],
[-0.2408, -0.8692, 1.4777, 0.9520],
[ 0.7200, 0.2607, -0.0887, 1.6848]]], grad_fn=)
# 第一个list的第一行、第二个list的第二行 是一样的
embed.shape # torch.Size([2, 3, 4])
embed.size() # torch.Size([2, 3, 4])
取字典对应的值也是可以的
word_to_ix = {'hello': 0, 'world': 1}
embeds = nn.Embedding(2, 5) # 2个词,5d
# print(embeds) # Embedding(2, 5)
hello_idx = torch.LongTensor([word_to_ix['hello']])
hello_idx = Variable(hello_idx)
# hello_idx # tensor([0])
# 变量名-》变量值-》get emb
hello_embed = embeds(hello_idx)
print(hello_embed)
tensor([[ 0.0702, -1.7894, -0.7901, 1.6338, -0.7428]],
grad_fn=)
hello_embed.shape # torch.Size([1, 5])
观察embs_a,embs_b的拼接
embs_a = torch.randn(2,3)
embs_a
(tensor([[ 0.2293, -0.0313, -0.3125],
[ 0.1254, 0.4505, 0.2046]])
embs_a.shape # torch.Size([2, 3]))
embs_b = torch.randn(2,3)
tensor([[-0.6700, 0.0621, 0.8191],
[-0.8210, 1.6372, -0.4524]])
embs_a_cat = torch.cat((embs_a,embs_b), dim=-1)
print(embs_a_cat)
tensor([[ 0.2293, -0.0313, -0.3125, -0.6700, 0.0621, 0.8191],
[ 0.1254, 0.4505, 0.2046, -0.8210, 1.6372, -0.4524]])
print(embs_a_cat.shape)
torch.Size([2, 6])