GluonCV ------ gluoncv/utils/metrics/voc_detection.py ------ VOC数据集的评估

1.class VOCMApMetric(EvalMetric):

1.1 初始化函数

    Parameters:
    ---------
    iou_thresh : float
        IOU overlap threshold for TP
    class_names : list of str
        optional, if provided, will print out AP for each class
    """
    def __init__(self, iou_thresh=0.5, class_names=None):
        super(VOCMApMetric, self).__init__('VOCMeanAP')
        if class_names is None:
            self.num = None
        else:
            assert isinstance(class_names, (list, tuple))
            for name in class_names:
                assert isinstance(name, str), "must provide names as str"
            num = len(class_names)
            self.name = list(class_names) + ['mAP']
            self.num = num + 1
        self.reset()
        self.iou_thresh = iou_thresh
        self.class_names = class_names

1.2 重置函数 – 初始化数据缓存

    def reset(self):
        """Clear the internal statistics to initial state."""
        if getattr(self, 'num', None) is None:
            self.num_inst = 0
            self.sum_metric = 0.0
        else:
            self.num_inst = [0] * self.num
            self.sum_metric = [0.0] * self.num
        self._n_pos = defaultdict(int)
        self._score = defaultdict(list)
        self._match = defaultdict(list)

1.3 外部获取结果接口

    def get(self):
        """Get the current evaluation result.

        Returns
        -------
        name : str
           Name of the metric.
        value : float
           Value of the evaluation.
        """
        self._update()  # update metric at this time
        if self.num is None:
            if self.num_inst == 0:
                return (self.name, float('nan'))
            else:
                return (self.name, self.sum_metric / self.num_inst)
        else:
            names = ['%s'%(self.name[i]) for i in range(self.num)]
            values = [x / y if y != 0 else float('nan') \
                for x, y in zip(self.sum_metric, self.num_inst)]
            return (names, values)

1.4 数据输入源 – 计算结果更新内部数据

    def update(self, pred_bboxes, pred_labels, pred_scores,
               gt_bboxes, gt_labels, gt_difficults=None):
        """Update internal buffer with latest prediction and gt pairs.

        Parameters
        ----------
        pred_bboxes : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes with shape `B, N, 4`.
            Where B is the size of mini-batch, N is the number of bboxes.
        pred_labels : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes labels with shape `B, N, 1`.
        pred_scores : mxnet.NDArray or numpy.ndarray
            Prediction bounding boxes scores with shape `B, N, 1`.
        gt_bboxes : mxnet.NDArray or numpy.ndarray
            Ground-truth bounding boxes with shape `B, M, 4`.
            Where B is the size of mini-batch, M is the number of ground-truths.
        gt_labels : mxnet.NDArray or numpy.ndarray
            Ground-truth bounding boxes labels with shape `B, M, 1`.
        gt_difficults : mxnet.NDArray or numpy.ndarray, optional, default is None
            Ground-truth bounding boxes difficulty labels with shape `B, M, 1`.

        """
        def as_numpy(a):
            """Convert a (list of) mx.NDArray into numpy.ndarray"""
            
            ##--这里是将 a list of mx.NDArray 转化为 numpy.ndarray -> 去方括号
            if isinstance(a, (list, tuple)):
                out = [x.asnumpy() if isinstance(x, mx.nd.NDArray) else x for x in a]
                try:
                
                	##--把列表内部的numpy整合到一块去
                    out = np.concatenate(out, axis=0)
                except ValueError:
                    out = np.array(out)
                return out
                
            ##--这里是将a mx.NDArray 转化为 numpy.ndarray
            elif isinstance(a, mx.nd.NDArray):
                a = a.asnumpy()
            return a
            
		##--不知道干嘛,貌似不重要。
        if gt_difficults is None:
            gt_difficults = [None for _ in as_numpy(gt_labels)]
		
        if isinstance(gt_labels, list):
            gt_diff_shape = gt_difficults[0].shape[0] if hasattr(gt_difficults[0], 'shape') else 0
            if len(gt_difficults) * gt_diff_shape != \
                    len(gt_labels) * gt_labels[0].shape[0]:
                gt_difficults = [None] * len(gt_labels) * gt_labels[0].shape[0]
		
		##--拆掉各元素列表的方括号,变成numpy,再遍历Batch维度。
        for pred_bbox, pred_label, pred_score, gt_bbox, gt_label, gt_difficult in zip(
                *[as_numpy(x) for x in [pred_bboxes, pred_labels, pred_scores,
                                        gt_bboxes, gt_labels, gt_difficults]]):
            # strip padding -1 for pred and gt
            valid_pred = np.where(pred_label.flat >= 0)[0]
            pred_bbox = pred_bbox[valid_pred, :]
            pred_label = pred_label.flat[valid_pred].astype(int)
            pred_score = pred_score.flat[valid_pred]
            valid_gt = np.where(gt_label.flat >= 0)[0]
            gt_bbox = gt_bbox[valid_gt, :]
            gt_label = gt_label.flat[valid_gt].astype(int)
            if gt_difficult is None:
                gt_difficult = np.zeros(gt_bbox.shape[0])
            else:
                gt_difficult = gt_difficult.flat[valid_gt]

            for l in np.unique(np.concatenate((pred_label, gt_label)).astype(int)):
                pred_mask_l = pred_label == l
                pred_bbox_l = pred_bbox[pred_mask_l]
                pred_score_l = pred_score[pred_mask_l]
                # sort by score
                order = pred_score_l.argsort()[::-1]
                pred_bbox_l = pred_bbox_l[order]
                pred_score_l = pred_score_l[order]

                gt_mask_l = gt_label == l
                gt_bbox_l = gt_bbox[gt_mask_l]
                gt_difficult_l = gt_difficult[gt_mask_l]

                self._n_pos[l] += np.logical_not(gt_difficult_l).sum()
                self._score[l].extend(pred_score_l)

                if len(pred_bbox_l) == 0:
                    continue
                if len(gt_bbox_l) == 0:
                    self._match[l].extend((0,) * pred_bbox_l.shape[0])
                    continue

                # VOC evaluation follows integer typed bounding boxes.
                pred_bbox_l = pred_bbox_l.copy()
                pred_bbox_l[:, 2:] += 1
                gt_bbox_l = gt_bbox_l.copy()
                gt_bbox_l[:, 2:] += 1

                iou = bbox_iou(pred_bbox_l, gt_bbox_l)
                gt_index = iou.argmax(axis=1)
                # set -1 if there is no matching ground truth
                gt_index[iou.max(axis=1) < self.iou_thresh] = -1
                del iou

                selec = np.zeros(gt_bbox_l.shape[0], dtype=bool)
                for gt_idx in gt_index:
                    if gt_idx >= 0:
                        if gt_difficult_l[gt_idx]:
                            self._match[l].append(-1)
                        else:
                            if not selec[gt_idx]:
                                self._match[l].append(1)
                            else:
                                self._match[l].append(0)
                        selec[gt_idx] = True
                    else:
                        self._match[l].append(0)

1.5

    def _update(self):
        """ update num_inst and sum_metric """
        aps = []
        recall, precs = self._recall_prec()
        for l, rec, prec in zip(range(len(precs)), recall, precs):
            ap = self._average_precision(rec, prec)
            aps.append(ap)
            if self.num is not None and l < (self.num - 1):
                self.sum_metric[l] = ap
                self.num_inst[l] = 1
        if self.num is None:
            self.num_inst = 1
            self.sum_metric = np.nanmean(aps)
        else:
            self.num_inst[-1] = 1
            self.sum_metric[-1] = np.nanmean(aps)

1.6

    def _update(self):
        """ update num_inst and sum_metric """
        aps = []
        recall, precs = self._recall_prec()
        for l, rec, prec in zip(range(len(precs)), recall, precs):
            ap = self._average_precision(rec, prec)
            aps.append(ap)
            if self.num is not None and l < (self.num - 1):
                self.sum_metric[l] = ap
                self.num_inst[l] = 1
        if self.num is None:
            self.num_inst = 1
            self.sum_metric = np.nanmean(aps)
        else:
            self.num_inst[-1] = 1
            self.sum_metric[-1] = np.nanmean(aps)

1.7 召回率和精度的计算

    def _recall_prec(self):
        """ get recall and precision from internal records """
        n_fg_class = max(self._n_pos.keys()) + 1
        prec = [None] * n_fg_class
        rec = [None] * n_fg_class

        for l in self._n_pos.keys():
            score_l = np.array(self._score[l])
            match_l = np.array(self._match[l], dtype=np.int32)

            order = score_l.argsort()[::-1]
            match_l = match_l[order]

            tp = np.cumsum(match_l == 1)
            fp = np.cumsum(match_l == 0)

            # If an element of fp + tp is 0,
            # the corresponding element of prec[l] is nan.
            with np.errstate(divide='ignore', invalid='ignore'):
                prec[l] = tp / (fp + tp)
            # If n_pos[l] is 0, rec[l] is None.
            if self._n_pos[l] > 0:
                rec[l] = tp / self._n_pos[l]

        return rec, prec

1.8


    def _average_precision(self, rec, prec):
        """
        calculate average precision

        Params:
        ----------
        rec : numpy.array
            cumulated recall
        prec : numpy.array
            cumulated precision
        Returns:
        ----------
        ap as float
        """
        if rec is None or prec is None:
            return np.nan

        # append sentinel values at both ends
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], np.nan_to_num(prec), [0.]))

        # compute precision integration ladder
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

        # look for recall value changes
        i = np.where(mrec[1:] != mrec[:-1])[0]

        # sum (\delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
        return ap

你可能感兴趣的:(DL,python,深度学习,神经网络)