【笔试及竞赛重点之背包问题】一文吃透背包问题全家桶

1. 01背包问题

【笔试及竞赛重点之背包问题】一文吃透背包问题全家桶_第1张图片

1.1 版本1 二维

(1)状态f[i][j]定义:前 ii 个物品,背包容量 jj 下的最优解(最大价值):

当前的状态依赖于之前的状态,可以理解为从初始状态f[0][0] = 0开始决策,有 NN 件物品,则需要 NN 次决 策,每一次对第 ii 件物品的决策,状态f[i][j]不断由之前的状态更新而来。
(2)当前背包容量不够(j < v[i]),没得选,因此前 ii 个物品最优解即为前 i−1i−1 个物品最优解:

对应代码:f[i][j] = f[i - 1][j]。
(3)当前背包容量够,可以选,因此需要决策选与不选第 ii 个物品:

选:f[i][j] = f[i - 1][j - v[i]] + w[i]。
不选:f[i][j] = f[i - 1][j] 。
我们的决策是如何取到最大价值,因此以上两种情况取 max() 。

dp数组:所有包括第i个物品且体积不超过j的物品的集合。

核心思想,dp数组的分类处理,是否包含第i件物品,如果不包含

dp[i][j]=dp[i-1][j];

需要保证背包可以装下第i个物品

dp[i][j]=Math.max(dp[i][j],dp[i-1][j-v[i]]+w[i]);
import java.util.*;
public class Main{
    public static void main(String[] args){
        Scanner scan = new Scanner(System.in);
        int N = 1010;
        int[] v = new int[N];
        int[] w = new int[N];
        int[][] f = new int[N][N];
        int n = scan.nextInt();
        int m = scan.nextInt();
        for(int i = 1 ; i <= n ; i ++ ){
            v[i] = scan.nextInt();
            w[i] = scan.nextInt();
        }
        for(int i = 1 ; i <= n ; i ++ ){
            for(int j = 0 ; j <= m ; j ++ ){
                f[i][j] = f[i - 1][j]; // 左边不包含i的方案
                if(j >= v[i])  f[i][j] = Math.max(f[i][j] , f[i - 1][j - v[i]] + w[i]);//右边包含i的方案,f[i-1][j - v[i]] + w[i]
            }
        }
        System.out.println(f[n][m]);
    }
}

1.2 版本2 一维

将状态f[i][j]优化到一维f[j],实际上只需要做一个等价变形。

为什么可以这样变形呢?我们定义的状态f[i][j]可以求得任意合法的i与j最优解,但题目只需要求得最终状态f[n][m],因此我们只需要一维的空间来更新状态。

(1)状态f[j]定义:NN 件物品,背包容量j下的最优解。

(2)注意枚举背包容量j必须从m开始。

(3)为什么一维情况下枚举背包容量需要逆序?在二维情况下,状态f[i][j]是由上一轮i - 1的状态得来的,f[i][j]与f[i - 1][j]是独立的。而优化到一维后,如果我们还是正序,则有f[较小体积]更新到f[较大体积],则有可能本应该用第i-1轮的状态却用的是第i轮的状态。

(4)例如,一维状态第i轮对体积为 33 的物品进行决策,则f[7]由f[4]更新而来,这里的f[4]正确应该是f[i - 1][4],但从小到大枚举j这里的f[4]在第i轮计算却变成了f[i][4]。当逆序枚举背包容量j时,我们求f[7]同样由f[4]更新,但由于是逆序,这里的f[4]还没有在第i轮计算,所以此时实际计算的f[4]仍然是f[i - 1][4]。

(5)简单来说,一维情况正序更新状态f[j]需要用到前面计算的状态已经被「污染」,逆序则不会有这样的问题。

状态转移方程为:f[j] = max(f[j], f[j - v[i]] + w[i] 。

import java.util.*;
public class Main{
    public static void main(String[] args){
        Scanner scan = new Scanner(System.in);
        int N = 1010;
        int[] v = new int[N];
        int[] w= new int[N];
        int[] f = new int[N];
        int n = scan.nextInt();
        int m = scan.nextInt();
        for(int i = 1;i<=n;i++){
            v[i] = scan.nextInt();
            w[i] = scan.nextInt();
        }
        for(int i = 1; i<=n;i++){
            for(int j = m;j>=0;j--){
                if(j >=v[i]) f[j] = Math.max(f[j],f[j-v[i]]+w[i]);
            }
        }
        System.out.println(f[m]);
    }
}

2. 完全背包问题

【笔试及竞赛重点之背包问题】一文吃透背包问题全家桶_第2张图片

思路:

同01背包问题。区别在于01背包对于每种物品只有选或不选,这也即「01」的由来。多重背包则对于每种物品可以多次选择。

2.1 二维朴素写法

import java.util.*;
public class Main{
    public static void main(String[] args){
        int N = 1010;
        int[] v= new int[N];
        int[] w =new int[N];
        int[][] f = new int[N][N];
        Scanner scan = new Scanner(System.in);
        int n = scan.nextInt();
        int m = scan.nextInt();
        for(int i = 1; i <= n ;i++){
            v[i] = scan.nextInt();
            w[i] = scan.nextInt();
        }
        for(int i = 1; i <=n;i++){
            for(int j = 0;j<=m;j++){
                f[i][j] = f[i-1][j];
                if(j >= v[i]) f[i][j] = Math.max(f[i][j],f[i][j-v[i]]+w[i]);
            }
        }
        System.out.println(f[n][m]);
    }
}

2.2 一维优化版

这里对比01背包问题,注意下标,我们可以发现

if(j >= v[i]) dp[i][j]=Math.max(dp[i][j],dp[i-1][j-v[i]]+w[i]);//01背包
if(j >= v[i]) f[i][j] = Math.max(f[i][j],f[i][j-v[i]]+w[i]);//完全背包

仅仅是f[i]dp[i-1]的区别,所以对应一维优化

import java.util.*;
public class Main{
    public static void main(String[] args){
        Scanner scan = new Scanner(System.in);
        int N = 1010;
        int[] v = new int[N];
        int[] w = new int[N];
        int[] f = new int[N];
        int n = scan.nextInt();
        int m = scan.nextInt();
        for(int i = 1 ; i <= n ; i ++ ){
            v[i] = scan.nextInt();
            w[i] = scan.nextInt();
        }
        for(int i = 1 ; i <= n ; i ++ ){
            for(int j = m ; j >= v[i] ; j -- ){
                    f[j] = Math.max(f[j] , f[j - v[i]] + w[i]);
                }
            }
        }
        System.out.println(f[m]);
    }
}

3. 多重背包问题

【笔试及竞赛重点之背包问题】一文吃透背包问题全家桶_第3张图片

分析

当 si=1 时,相当于01背包中的一件物品
当 si>1 时,相当于01背包中的多个一件物品
故我们可以死拆(把多重背包拆成01背包)

直接枚举第i件物品的选择数,满足总体积不超过j即可
【笔试及竞赛重点之背包问题】一文吃透背包问题全家桶_第4张图片

朴素解法

import java.util.*;
public class Main{
    public static void main(String[] args){
        Scanner scan = new Scanner(System.in);
        int N = 110;
        int[] v = new int[N],w = new int[N],s = new int[N];
        int[][] f = new int[N][N];
        int n = scan.nextInt();
        int m = scan.nextInt();
        for(int i = 1 ; i <= n ; i ++ ){
            v[i] = scan.nextInt();
            w[i] = scan.nextInt();
            s[i] = scan.nextInt();
        }

        for(int i = 1 ; i <= n ; i ++ )
            for(int j = 0 ; j <= m ; j ++ )
                for(int k = 0 ; k <= s[i] && k * v[i] <= j; k ++ )
                     f[i][j] = Math.max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);

        System.out.println(f[n][m]);
    }
}

4. 分组背包问题

【笔试及竞赛重点之背包问题】一文吃透背包问题全家桶_第5张图片

分析:

【笔试及竞赛重点之背包问题】一文吃透背包问题全家桶_第6张图片

朴素解法

import java.util.*;
public class Main{
    public static void main(String[] ags){
        Scanner scan = new Scanner(System.in);
        int N = 110;
        int[][] v = new int[N][N];
        int[][] w = new int[N][N];
        int[] s = new int[N];
        int[] f = new int[N];
        int n = scan.nextInt();
        int m = scan.nextInt();
        for(int i = 1 ; i <= n ; i ++ ){
            s[i] = scan.nextInt();
            for(int j = 1 ; j <= s[i] ; j ++ ){
                v[i][j] = scan.nextInt();
                w[i][j] = scan.nextInt();
            }
        }

        for(int i = 1 ; i <= n ; i ++ ){
            for(int j = m ; j >= 0 ; j -- ){
                for(int k = 0; k <= s[i] ; k ++ ){
                    if(j >= v[i][k])  
                        f[j] = Math.max(f[j], f[j - v[i][k]] + w[i][k]);
                }
            }
        }
        System.out.println(f[m]);
    }
}

小结

01背包问题是所有背包问题的基础,其他的各种背包问题都是在它的基础上做一些变形,所以吃透01背包问题是学好背包的关键,建议反复比对各种背包问题的代码,搞清楚为什么会这么改变,以及为什么这么一调整就能解决对应的背包问题。

你可能感兴趣的:(算法,算法,动态规划,线性回归)