尝试以下代码:它将检测所有圆、曲线和圆弧:int main()
{
//RANSAC
//load edge image
cv::Mat color = cv::imread("../circleDetectionEdges.png");
// convert to grayscale
cv::Mat gray;
cv::cvtColor(color, gray, CV_RGB2GRAY);
// get binary image
cv::Mat mask = gray > 0;
//erode the edges to obtain sharp/thin edges (undo the blur?)
cv::erode(mask, mask, cv::Mat());
std::vector<:point2f> edgePositions;
edgePositions = getPointPositions(mask);
// create distance transform to efficiently evaluate distance to nearest edge
cv::Mat dt;
cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);
//TODO: maybe seed random variable for real random numbers.
unsigned int nIterations = 0;
char quitKey = 'q';
std::cout << "press " << quitKey << " to stop" << std::endl;
while(cv::waitKey(-1) != quitKey)
{
//RANSAC: randomly choose 3 point and create a circle:
//TODO: choose randomly but more intelligent,
//so that it is more likely to choose three points of a circle.
//For example if there are many small circles, it is unlikely to randomly choose 3 points of the same circle.
unsigned int idx1 = rand()%edgePositions.size();
unsigned int idx2 = rand()%edgePositions.size();
unsigned int idx3 = rand()%edgePositions.size();
// we need 3 different samples:
if(idx1 == idx2) continue;
if(idx1 == idx3) continue;
if(idx3 == idx2) continue;
// create circle from 3 points:
cv::Point2f center; float radius;
getCircle(edgePositions[idx1],edgePositions[idx2],edgePositions[idx3],center,radius);
float minCirclePercentage = 0.4f;
// inlier set unused at the moment but could be used to approximate a (more robust) circle from alle inlier
std::vector<:point2f> inlierSet;
//verify or falsify the circle by inlier counting:
float cPerc = verifyCircle(dt,center,radius, inlierSet);
if(cPerc >= minCirclePercentage)
{
std::cout << "accepted circle with " << cPerc*100.0f << " % inlier" << std::endl;
// first step would be to approximate the circle iteratively from ALL INLIER to obtain a better circle center
// but that's a TODO
std::cout << "circle: " << "center: " << center << " radius: " << radius << std::endl;
cv::circle(color, center,radius, cv::Scalar(255,255,0),1);
// accept circle => remove it from the edge list
cv::circle(mask,center,radius,cv::Scalar(0),10);
//update edge positions and distance transform
edgePositions = getPointPositions(mask);
cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);
}
cv::Mat tmp;
mask.copyTo(tmp);
// prevent cases where no fircle could be extracted (because three points collinear or sth.)
// filter NaN values
if((center.x == center.x)&&(center.y == center.y)&&(radius == radius))
{
cv::circle(tmp,center,radius,cv::Scalar(255));
}
else
{
std::cout << "circle illegal" << std::endl;
}
++nIterations;
cv::namedWindow("RANSAC"); cv::imshow("RANSAC", tmp);
}
std::cout << nIterations << " iterations performed" << std::endl;
cv::namedWindow("edges"); cv::imshow("edges", mask);
cv::namedWindow("color"); cv::imshow("color", color);
cv::imwrite("detectedCircles.png", color);
cv::waitKey(-1);
return 0;
}
float verifyCircle(cv::Mat dt, cv::Point2f center, float radius, std::vector<:point2f> & inlierSet)
{
unsigned int counter = 0;
unsigned int inlier = 0;
float minInlierDist = 2.0f;
float maxInlierDistMax = 100.0f;
float maxInlierDist = radius/25.0f;
if(maxInlierDist
if(maxInlierDist>maxInlierDistMax) maxInlierDist = maxInlierDistMax;
// choose samples along the circle and count inlier percentage
for(float t =0; t<2*3.14159265359f; t+= 0.05f)
{
counter++;
float cX = radius*cos(t) + center.x;
float cY = radius*sin(t) + center.y;
if(cX < dt.cols)
if(cX >= 0)
if(cY < dt.rows)
if(cY >= 0)
if(dt.at(cY,cX) < maxInlierDist)
{
inlier++;
inlierSet.push_back(cv::Point2f(cX,cY));
}
}
return (float)inlier/float(counter);
}
inline void getCircle(cv::Point2f& p1,cv::Point2f& p2,cv::Point2f& p3, cv::Point2f& center, float& radius)
{
float x1 = p1.x;
float x2 = p2.x;
float x3 = p3.x;
float y1 = p1.y;
float y2 = p2.y;
float y3 = p3.y;
// PLEASE CHECK FOR TYPOS IN THE FORMULA :)
center.x = (x1*x1+y1*y1)*(y2-y3) + (x2*x2+y2*y2)*(y3-y1) + (x3*x3+y3*y3)*(y1-y2);
center.x /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
center.y = (x1*x1 + y1*y1)*(x3-x2) + (x2*x2+y2*y2)*(x1-x3) + (x3*x3 + y3*y3)*(x2-x1);
center.y /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
radius = sqrt((center.x-x1)*(center.x-x1) + (center.y-y1)*(center.y-y1));
}
std::vector<:point2f> getPointPositions(cv::Mat binaryImage)
{
std::vector<:point2f> pointPositions;
for(unsigned int y=0; y
{
//unsigned char* rowPtr = binaryImage.ptr(y);
for(unsigned int x=0; x
{
//if(rowPtr[x] > 0) pointPositions.push_back(cv::Point2i(x,y));
if(binaryImage.at(y,x) > 0) pointPositions.push_back(cv::Point2f(x,y));
}
}
return pointPositions;
}