本文主要来自datawhale的transformer教程4.2和天国之影学习笔记。
只要预训练的transformer模型最顶层有一个token分类的神经网络层(比如上一篇章提到的BertForTokenClassification,需要对应的预训练模型有fast tokenizer这个功能,参考这个表),那么本notebook理论上可以使用各种各样的transformer模型(模型面板),解决任何token级别的分类任务。
如果您所处理的任务有所不同,大概率只需要很小的改动便可以使用本notebook进行处理。同时,您应该根据您的GPU显存来调整微调训练所需要的btach size大小,避免显存溢出。
# 设置分类任务
task = "ner"
# 设置BERT模型
model_checkpoint = "distilbert-base-uncased"
# 根据GPU调整batch_size大小,避免显存溢出
batch_size = 16
#加载数据和评测方式
from datasets import load_dataset, load_metric
本文使用的是CONLL 2003 dataset数据集。来处理Datasets库中的任何token分类任务。如果要加载自定义的json/csv文件数据集,可以参考数据集文档来学习如何加载。自定义数据集可能需要在加载属性名字上做一些调整
# 加载conll2003数据集
datasets = load_dataset("conll2003")
Reusing dataset conll2003 (C:\Users\hurui\.cache\huggingface\datasets\conll2003\conll2003\1.0.0\40e7cb6bcc374f7c349c83acd1e9352a4f09474eb691f64f364ee62eb65d0ca6)
datasets
datasets对象本身是一种DatasetDict数据结构。可以使用对应的key得到相应的数据
DatasetDict({
train: Dataset({
features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],
num_rows: 14041
})
validation: Dataset({
features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],
num_rows: 3250
})
test: Dataset({
features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],
num_rows: 3453
})
})
#label列对应tokens的标注
# 查看训练集第一条数据
datasets["train"][0]
{'id': '0',
'tokens': ['EU',
'rejects',
'German',
'call',
'to',
'boycott',
'British',
'lamb',
'.'],
'pos_tags': [22, 42, 16, 21, 35, 37, 16, 21, 7],
'chunk_tags': [11, 21, 11, 12, 21, 22, 11, 12, 0],
'ner_tags': [3, 0, 7, 0, 0, 0, 7, 0, 0]}
所有的数据标签labels都已经被编码成了整数,可以直接被预训练transformer模型使用。这些整数的编码所对应的实际类别储存在features中。
# 查看features属性
datasets["train"].features[f"ner_tags"]
Sequence(feature=ClassLabel(num_classes=9, names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC'], names_file=None, id=None), length=-1, id=None)
以NER为例,0对应的标签类别是”O“, 1对应的是”B-PER“等等。具体标签含义对应如下:
label_list = datasets["train"].features[f"{task}_tags"].feature.names
label_list
['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC']
定义下面的函数,从数据集里随机选择几个例子进行展示
from datasets import ClassLabel, Sequence
import random
import pandas as pd
from IPython.display import display, HTML
def show_random_elements(dataset, num_examples=10):
"""从数据集中随机选择几条数据"""
assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset."
picks = []
for _ in range(num_examples):
pick = random.randint(0, len(dataset)-1)
while pick in picks:
pick = random.randint(0, len(dataset)-1)
picks.append(pick)
df = pd.DataFrame(dataset[picks])
for column, typ in dataset.features.items():
if isinstance(typ, ClassLabel):
df[column] = df[column].transform(lambda i: typ.names[i])
elif isinstance(typ, Sequence) and isinstance(typ.feature, ClassLabel):
df[column] = df[column].transform(lambda x: [typ.feature.names[i] for i in x])
display(HTML(df.to_html()))
show_random_elements(datasets["train"])
id | tokens | pos_tags | chunk_tags | ner_tags | |
---|---|---|---|---|---|
0 | 4143 | [The, 85-year-old, nun, said, in, the, past, that, she, was, praying, for, the, couple, ,, whose, divorce, is, expected, to, become, final, next, week, .] | [DT, JJ, NN, VBD, IN, DT, NN, IN, PRP, VBD, VBG, IN, DT, NN, ,, WP\$, NN, VBZ, VBN, TO, VB, JJ, JJ, NN, .] | [B-NP, I-NP, I-NP, B-VP, B-PP, B-NP, I-NP, B-SBAR, B-NP, B-VP, I-VP, B-PP, B-NP, I-NP, O, B-NP, I-NP, B-VP, I-VP, I-VP, I-VP, B-NP, I-NP, I-NP, O] | [O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O] |
1 | 2442 | [2., Marie-Jose, Perec, (, France, ), 49.72] | [CD, NNP, NNP, (, NNP, ), CD] | [B-NP, I-NP, I-NP, O, B-NP, O, B-NP] | [O, B-PER, I-PER, O, B-LOC, O, O] |
2 | 1090 | [There, were, no, significant, differences, between, the, groups, receiving, garlic, and, placebo, ,, ", they, wrote, in, the, Journal, of, the, Royal, College, of, Physicians, .] | [EX, VBD, DT, JJ, NNS, IN, DT, NNS, VBG, NN, CC, NN, ,, ", PRP, VBD, IN, DT, NNP, IN, DT, NNP, NNP, IN, NNPS, .] | [B-NP, B-VP, B-NP, I-NP, I-NP, B-PP, B-NP, I-NP, B-VP, B-NP, I-NP, I-NP, O, O, B-NP, B-VP, B-PP, B-NP, I-NP, B-PP, B-NP, I-NP, I-NP, B-PP, B-NP, O] | [O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, B-ORG, I-ORG, I-ORG, I-ORG, I-ORG, I-ORG, I-ORG, O] |
3 | 1972 | [Pakistan, first, innings] | [NNP, RB, NN] | [B-NP, B-ADVP, B-NP] | [B-LOC, O, O] |
4 | 13714 | [The, Taiwan, dollar, closed, slightly, firmer, on, Thursday, amid, tight, Taiwan, dollar, liquidity, in, the, banking, system, ,, and, dealers, said, the, rate, was, likely, to, move, narrowly, in, the, near, term, .] | [DT, NNP, NN, VBD, RB, JJR, IN, NNP, IN, JJ, NNP, NN, NN, IN, DT, NN, NN, ,, CC, NNS, VBD, DT, NN, VBD, JJ, TO, VB, RB, IN, DT, JJ, NN, .] | [B-NP, I-NP, I-NP, B-VP, B-ADVP, B-ADJP, B-PP, B-NP, B-PP, B-NP, I-NP, I-NP, I-NP, B-PP, B-NP, I-NP, I-NP, O, O, B-NP, B-VP, B-NP, I-NP, B-VP, B-ADJP, B-VP, I-VP, I-VP, B-PP, B-NP, I-NP, I-NP, O] | [O, B-LOC, O, O, O, O, O, O, O, O, B-LOC, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O] |
5 | 4806 | [nine, of, the, superbike, world, championship, on, Sunday, :] | [CD, IN, DT, JJ, NN, NN, IN, NNP, :] | [B-NP, B-PP, B-NP, I-NP, I-NP, I-NP, B-PP, B-NP, O] | [O, O, O, O, O, O, O, O, O] |
6 | 7452 | [The, accident, happened, when, the, Sanchez, Zarraga, family, took, their, boat, out, for, a, nighttime, spin, ,, Civil, Defence, and, Coast, Guard, officials, said, .] | [DT, NN, VBD, WRB, DT, NNP, NNP, NN, VBD, PRP\$, NN, RP, IN, DT, NN, NN, ,, NNP, NN, CC, NNP, NNP, NNS, VBD, .] | [B-NP, I-NP, B-VP, B-ADVP, B-NP, I-NP, I-NP, I-NP, B-VP, B-NP, I-NP, B-ADVP, B-PP, B-NP, I-NP, I-NP, O, B-NP, I-NP, O, B-NP, I-NP, I-NP, B-VP, O] | [O, O, O, O, O, B-PER, I-PER, O, O, O, O, O, O, O, O, O, O, B-ORG, I-ORG, I-ORG, I-ORG, I-ORG, O, O, O] |
7 | 2332 | [7., Julie, Baumann, (, Switzerland, ), 13.36] | [NNP, NNP, NNP, (, NNP, ), CD] | [B-NP, I-NP, I-NP, O, B-NP, O, B-NP] | [O, B-PER, I-PER, O, B-LOC, O, O] |
8 | 9786 | [The, pilot, said, several, hijackers, appeared, to, be, placed, around, the, plane, .] | [DT, NN, VBD, JJ, NNS, VBD, TO, VB, VBN, IN, DT, NN, .] | [B-NP, I-NP, B-VP, B-NP, I-NP, B-VP, I-VP, I-VP, I-VP, B-PP, B-NP, I-NP, O] | [O, O, O, O, O, O, O, O, O, O, O, O, O] |
9 | 3451 | [(, 7-4, ), 6-2] | [(, CD, ), CD] | [B-LST, B-NP, O, B-NP] | [O, O, O, O] |
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
以下代码要求tokenizer必须是transformers.PreTrainedTokenizerFast类型,因为我们在预处理的时候需要用到fast tokenizer的一些特殊特性(比如多线程快速tokenizer)。在这里big table of models查看模型是否有fast tokenizer。
tokenizer既可以对单个文本进行预处理,也可以对一对文本进行预处理,tokenizer预处理后得到的数据满足预训练模型输入格式
import transformers
# 模型使用的时fast tokenizer
assert isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
tokenizer("Hello, this is one sentence!")
{'input_ids': [101, 7592, 1010, 2023, 2003, 2028, 6251, 999, 102], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1]}
tokenizer(["Hello", ",", "this", "is", "one", "sentence", "split",
"into", "words", "."], is_split_into_words=True)
{'input_ids': [101, 7592, 1010, 2023, 2003, 2028, 6251, 3975, 2046, 2616, 1012, 102], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
补充:
example = datasets["train"][4]
print(example["tokens"])
['Germany', "'s", 'representative', 'to', 'the', 'European', 'Union', "'s", 'veterinary', 'committee', 'Werner', 'Zwingmann', 'said', 'on', 'Wednesday', 'consumers', 'should', 'buy', 'sheepmeat', 'from', 'countries', 'other', 'than', 'Britain', 'until', 'the', 'scientific', 'advice', 'was', 'clearer', '.']
tokenized_input = tokenizer(example["tokens"], is_split_into_words=True)
tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])
print(tokens)
['[CLS]', 'germany', "'", 's', 'representative', 'to', 'the', 'european', 'union', "'", 's', 'veterinary', 'committee', 'werner', 'z', '##wing', '##mann', 'said', 'on', 'wednesday', 'consumers', 'should', 'buy', 'sheep', '##me', '##at', 'from', 'countries', 'other', 'than', 'britain', 'until', 'the', 'scientific', 'advice', 'was', 'clearer', '.', '[SEP]']
单词"Zwingmann" 和 "sheepmeat"继续被切分成了3个subtokens
由于标注数据通常是在word级别进行标注的,既然word还会被切分成subtokens,那么意味着我们还需要对标注数据进行subtokens的对齐。同时,由于预训练模型输入格式的要求,往往还需要加上一些特殊符号比如: [CLS] 和 [SEP]。
# 使用word_ids方法解决subtokens对齐问题
print(tokenized_input.word_ids())
[None, 0, 1, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 11, 11, 12, 13, 14, 15, 16, 17, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, None]
word_ids将每一个subtokens位置都对应了一个word的下标。比如第1个位置对应第0个word,然后第2、3个位置对应第1个word。特殊字符对应了None。有了这个list,我们就能将subtokens和words还有标注的labels对齐啦。
# 获取subtokens位置
word_ids = tokenized_input.word_ids()
# 将subtokens、words和标注的labels对齐
aligned_labels = [
-100 if i is None else example[f"{task}_tags"][i] for i in word_ids]
print(len(aligned_labels), len(tokenized_input["input_ids"]))
39 39#输出结果
我们通常将特殊字符的label设置为-100,在模型中-100通常会被忽略掉不计算loss
两种对齐label的方式:
将以上所有内容合起来变成我们的预处理函数,is_split_into_words=True在上面已经结束啦(?)
label_all_tokens = True
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(
examples["tokens"], truncation=True, is_split_into_words=True)
labels = []
for i, label in enumerate(examples[f"{task}_tags"]):
# 获取subtokens位置
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
# 遍历subtokens位置索引
for word_idx in word_ids:
if word_idx is None:
# 将特殊字符的label设置为-100
label_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
label_ids.append(label[word_idx])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
label_ids.append(label[word_idx] if label_all_tokens else -100)
previous_word_idx = word_idx
# 对齐word
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
以上的预处理函数可以处理一个样本,也可以处理多个样本exapmles(返回多个样本被预处理之后的结果list)
tokenize_and_align_labels(datasets['train'][:5])
{'input_ids': [[101, 7327, 19164, 2446, 2655, 2000, 17757, 2329, 12559, 1012, 102], [101, 2848, 13934, 102], [101, 9371, 2727, 1011, 5511, 1011, 2570, 102], [101, 1996, 2647, 3222, 2056, 2006, 9432, 2009, 18335, 2007, 2446, 6040, 2000, 10390, 2000, 18454, 2078, 2329, 12559, 2127, 6529, 5646, 3251, 5506, 11190, 4295, 2064, 2022, 11860, 2000, 8351, 1012, 102], [101, 2762, 1005, 1055, 4387, 2000, 1996, 2647, 2586, 1005, 1055, 15651, 2837, 14121, 1062, 9328, 5804, 2056, 2006, 9317, 10390, 2323, 4965, 8351, 4168, 4017, 2013, 3032, 2060, 2084, 3725, 2127, 1996, 4045, 6040, 2001, 24509, 1012, 102]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 3, 0, 7, 0, 0, 0, 7, 0, 0, -100], [-100, 1, 2, -100], [-100, 5, 0, 0, 0, 0, 0, -100], [-100, 0, 3, 4, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -100], [-100, 5, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, -100]]}
使用map函数将预处理函数应用到(map)所有样本上。
tokenized_datasets = datasets.map(tokenize_and_align_labels, batched=True)
Loading cached processed dataset at C:\Users\hurui\.cache\huggingface\datasets\conll2003\conll2003\1.0.0\40e7cb6bcc374f7c349c83acd1e9352a4f09474eb691f64f364ee62eb65d0ca6\cache-fa2382f441f8d16d.arrow
Loading cached processed dataset at C:\Users\hurui\.cache\huggingface\datasets\conll2003\conll2003\1.0.0\40e7cb6bcc374f7c349c83acd1e9352a4f09474eb691f64f364ee62eb65d0ca6\cache-8057d57320e0ee7a.arrow
Loading cached processed dataset at C:\Users\hurui\.cache\huggingface\datasets\conll2003\conll2003\1.0.0\40e7cb6bcc374f7c349c83acd1e9352a4f09474eb691f64f364ee62eb65d0ca6\cache-ea32e2b3f93b1edb.arrow
返回的结果会自动被缓存,避免下次处理的时候重新计算(但是也要注意,如果输入有改动,可能会被缓存影响!)。datasets库函数会对输入的参数进行检测,判断是否有变化,如果没有变化就使用缓存数据,如果有变化就重新处理。但如果输入参数不变,想改变输入的时候,最好清理调这个缓存。清理的方式是使用load_from_cache_file=False参数。另外,上面使用到的batched=True这个参数是tokenizer的特点,以为这会使用多线程同时并行对输入进行处理。
既然我们是做seq2seq任务,那么我们需要使用AutoModelForSequenceClassification 这个类。和tokenizer相似,from_pretrained方法同样可以帮助我们下载并加载模型,同时也会对模型进行缓存,就不会重复下载模型啦。
from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer
model = AutoModelForTokenClassification.from_pretrained(
model_checkpoint, num_labels=len(label_list))
Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForTokenClassification: ['vocab_layer_norm.weight', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_transform.weight']
- This IS expected if you are initializing DistilBertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing DistilBertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of DistilBertForTokenClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
由于我们微调的任务是文本分类任务,而我们加载的是预训练的语言模型,所以会提示我们加载模型的时候扔掉了一些不匹配的神经网络参数(比如:预训练语言模型的神经网络head被扔掉了,同时随机初始化了文本分类的神经网络head)
Trainer是一个简单但功能完整的 PyTorch 训练和评估循环,针对 Transformers 进行了优化。Trainer训练工具需要3个要素模型、数据集和训练参数。
Trainer(
model,#如果使用transformer模型,它将是一个transformers.PreTrainedModel类的子类
args,#训练参数
data_collator,
train_dataset,#训练集
eval_dataset,#测试集
tokenizer,#分词器
compute_metrics,#评测方式,评估时计算方式的函数
model_init: Callable[[], transformers.modeling_utils.PreTrainedModel] = None,
callbacks: Union[List[transformers.trainer_callback.TrainerCallback], NoneType] = None,#回调函数,用于保存最优模型参数
optimizers: Tuple[torch.optim.optimizer.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None,None) )#优化器
Trainer最重要的是训练参数 TrainingArguments。这个训练设定包含了能够定义训练过程的所有属性。
args = TrainingArguments(
f"test-{task}",
# 每个epcoh会做一次验证评估
evaluation_strategy = "epoch",
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=3,
weight_decay=0.01,
log_level='error',
logging_strategy="no",
report_to="none"
)
最后我们需要一个数据收集器data collator,将我们处理好的输入喂给模型。
from transformers import DataCollatorForTokenClassification
# 数据收集器,用于将处理好的数据输入给模型
data_collator = DataCollatorForTokenClassification(tokenizer)
我们使用seqeval metric来完成评估。将模型预测送入评估之前,我们也会做一些数据后处理:
metric = load_metric("seqeval")
#评估的输入是预测和label的list
labels = [label_list[i] for i in example[f"{task}_tags"]]
metric.compute(predictions=[labels], references=[labels])
{'LOC': {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2},
'ORG': {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1},
'PER': {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1},
'overall_precision': 1.0,
'overall_recall': 1.0,
'overall_f1': 1.0,
'overall_accuracy': 1.0}
对模型预测结果做一些后处理:
import numpy as np
def compute_metrics(p):
"""模型预测"""
predictions, labels = p
# 选择预测分类最大概率的下标
predictions = np.argmax(predictions, axis=2)
# 将下标转化为label,并忽略-100的位置
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
results = metric.compute(predictions=true_predictions, references=true_labels)
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
我们计算所有类别总的precision/recall/f1,所以会扔掉单个类别的precision/recall/f1
构造训练器Trainer
# 构造训练器Trainer,将数据/模型/参数传入Trainer
trainer = Trainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
[2634/2634 02:13, Epoch 3/3]
Epoch | Training Loss | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|
1 | No log | 0.062855 | 0.925795 | 0.937913 | 0.931814 | 0.983844 |
2 | No log | 0.062855 | 0.925795 | 0.937913 | 0.931814 | 0.983844 |
3 | No log | 0.062855 | 0.925795 | 0.937913 | 0.931814 | 0.983844 |
TrainOutput(global_step=2634, training_loss=0.02493840813546264, metrics={'train_runtime': 133.2372, 'train_samples_per_second': 316.151, 'train_steps_per_second': 19.769, 'total_flos': 511610930296956.0, 'train_loss': 0.02493840813546264, 'epoch': 3.0})
trainer.evaluate()
[204/204 00:07]
{'eval_loss': 0.06285537779331207,
'eval_precision': 0.9257950530035336,
'eval_recall': 0.9379125181787672,
'eval_f1': 0.931814392886913,
'eval_accuracy': 0.983843550923793,
'eval_runtime': 3.8895,
'eval_samples_per_second': 835.586,
'eval_steps_per_second': 52.449,
'epoch': 3.0}
如果想要得到单个类别的precision/recall/f1,我们直接将结果输入相同的评估函数即可:
predictions, labels, _ = trainer.predict(tokenized_datasets["validation"])
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
results = metric.compute(predictions=true_predictions, references=true_labels)
results
{'LOC': {'precision': 0.9513574660633484,
'recall': 0.9637127578304049,
'f1': 0.9574952561669828,
'number': 2618},
'MISC': {'precision': 0.8107255520504731,
'recall': 0.8350934199837531,
'f1': 0.8227290916366548,
'number': 1231},
'ORG': {'precision': 0.8882575757575758,
'recall': 0.9124513618677043,
'f1': 0.9001919385796545,
'number': 2056},
'PER': {'precision': 0.9778439153439153,
'recall': 0.9746209624258405,
'f1': 0.976229778804886,
'number': 3034},
'overall_precision': 0.9257950530035336,
'overall_recall': 0.9379125181787672,
'overall_f1': 0.931814392886913,
'overall_accuracy': 0.983843550923793}
本次任务,主要介绍了用BERT模型解决序列标注任务的方法及步骤,步骤主要分为加载数据、数据预处理、微调预训练模型。在加载数据阶段中,使用CONLL 2003 dataset数据集,并观察实体类别及表示形式;在数据预处理阶段中,对tokenizer分词器的建模,将subtokens、words和标注的labels对齐,并完成数据集中所有样本的预处理;在微调预训练模型阶段,通过对模型参数进行设置,设置seqeval评估方法,并构建Trainner训练器,进行模型训练,对precision、recall和f1值进行评估比较。
其中在数据集下载时,需要使用外网方式建立代理。