神器来啦!一键可视化,终于能看懂神经网络到底在干啥了

来源:量子位

神经网络在工作的时候,里面到底是什么样?

为了能透视这个“AI黑箱”中的过程,加拿大蒙特利尔一家公司开发一个3D可视化工具Zetane Engine。

只需要上传一个模型,Zetane Engine就可以巡视整个神经网络,并且还可以放大网络中的任何一层,显示特征图,看清流水线上的每一步:

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第1张图片
图注:卷积层的特征图(左)和特征图的3D可视化(右)

目前Zetane Engine不同系统的版本都可以在GitHub中找到(安装包见文末链接),话不多说,来看看Zetane Engine具体的用法吧~

可视化AI工作流程

首先,我们需要上传一个模型,例如一个识别手写数字的神经网络,输入的图片是一个手写的“2”:

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第2张图片

上传之后,Zetane Engine就绘制出了一条“流水线”,每一层神经网络就像一个个工作间:

从输入到卷积,再到连接、激活、池化:

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第3张图片

这些个小工作间的进展也是透明的,不信我们聚焦到一个卷积层工作间,点这个图片形状的按钮:

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第4张图片

然后这个卷积层的所有特征图都会在上面显示出来,卷积数值的不同体现为颜色的不同,蓝紫色代表数值较小,红黄色代表数值较大:

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第5张图片

只有这些还不够,高能现在才刚开始,注意图片按钮右边九个点形状的按钮了吗?

点击它,Zetane Engine会在界面右边展示出一个工具栏,把刚才显示在卷积层上面的图片呈现出各种各样的形式~

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第6张图片

其中有排列成三维立体的、标注卷积结果数值的,以及纯数值的应有尽有:

二维视角 神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第7张图片
三维视角 神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第8张图片
标注卷积结果的平面图 神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第9张图片
纯卷积结果的数值平面图 神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第10张图片

这样的“工作报告”,谁看了不喜欢?不仅能够可视化地看到卷积过程,还可以调出每一个像素点上的卷积结果。

这还没完,这种多角度的图像处理在连接层、激活层、池化层等工作间也同样适用:

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第11张图片
图注:激活层特征图

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第12张图片
图注:池化层特征图

一整个看下来,神经网络的工作流程都清清楚楚:

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第13张图片

到了最后的全连接输出层,模型会输出一个十列的一维向量(下图右边),用来判断手写数字是0-9的哪一个。

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第14张图片

在这个例子中,模型给出了可能性最高的就是数字2。

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第15张图片

怎么样?有了这样可视化的工具,是不是感觉AI模型不再是一个黑箱了?

Zetane Engine用法速览

Zetane Engine不同系统的版本(Windows、Linux、Mac)都可以在GitHub中找到。

这里我们简单介绍一下Zetane Engine的界面和启动台,方便大家快速熟悉。

打开之后界面是比较简洁的,只有左上角和右上角有一些按钮。我们先看左上角。

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第16张图片

上传模型的按钮在启动台左上角Z字标志这里,Zetane Engine支持ONNX、Keras(.h5)以及ZTN三种模型文件。

Z字按钮旁边两个按钮依次是启动模型和清除模型:

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第17张图片

如果手头上还没有模型也没关系,点击界面右上角的Z形图标可以到Zetane Engine的模型库中下载模型:

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第18张图片

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第19张图片
图注:Zetane Engine的模型库

另外在启动台SNAPSHOTS按钮这里也有一些经典模型可以选择:

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第20张图片

感兴趣的同学可以从文末链接中找到Zetane Engine的下载包,来试试吧~

参考链接:

[1]https://github.com/Zetane/viewer
[2]https://www.youtube.com/watch?v=J3Zd5GR_lQs

推荐阅读

  • 【重磅】斯坦福李飞飞《注意力与Transformer》总结,84页ppt开放下载!

  • 苏黎世联邦理工学院SML课题组招收统计机器学习全奖博士生

  • 读博五年,我总结出了7条帮你「少走弯路」的真理

  • 仅需12层网络,在ImageNet上准确率达到80.7%!普林斯顿大学最新提出ParNet!

  • MobileViT: 一种更小,更快,高精度的轻量级Transformer端侧网络架构(附代码实现)

  • 【移动端最强架构】LCNet吊打现有主流轻量型网络(附代码实现)

  • 基于Attention机制的轻量级网络架构以及代码实现

  • 深度学习中的轻量级网络架构总结与代码实现

  • 一文详解Inception家族的前世今生(从InceptionV1-V4、Xception)附全部代码实现

  • 华为2012实验室诺亚方舟实验室招聘视觉感知算法实习生

欢迎大家加入DLer-计算机视觉&Transformer群!

大家好,这是计算机视觉&Transformer论文分享群里,群里会第一时间发布最新的Transformer前沿论文解读及交流分享会,主要设计方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、视频超分、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。

进群请备注:研究方向+学校/公司+昵称(如Transformer+上交+小明)

神器来啦!一键可视化,终于能看懂神经网络到底在干啥了_第21张图片

 长按识别,邀请您进群!

你可能感兴趣的:(卷积,网络,神经网络,可视化,人工智能)