import numpy as np
from matplotlib import pyplot as plt
import torch
data_xy = np.loadtxt('/home/chasing/Documents/pytorchbooklit/diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(data_xy[:,:-1])
y_data = torch.from_numpy(data_xy[:,-1]).reshape(-1,1)
class LinearExample(torch.nn.Module):
def __init__(self):
super(LinearExample, self).__init__()
self.linear1 = torch.nn.Linear(8,6)
self.linear2 = torch.nn.Linear(6,4)
self.linear3 = torch.nn.Linear(4,1)
self.sigmoid = torch.nn.Sigmoid()
self.relu = torch.nn.ReLU()
def forward(self,x):
x = self.relu(self.linear1(x))
x = self.relu(self.linear2(x))
x = self.linear3(x)
return self.relu(x)
model = LinearExample()
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(),lr=1e-2)
loss_list = list()
if __name__ == '__main__':
for epoch in range(300):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
plt.plot(loss_list)
plt.show()