- 如何用贡献法破解90%的数组难题?5大经典案例深度解析
六七_Shmily
数据结构与算法分析python算法开发语言
如何用贡献法破解90%的数组难题?5大经典案例深度解析引言在算法竞赛和面试中,数组类问题始终占据着重要地位。面对看似复杂的数组题目,老手们往往能一眼看穿本质——因为他们掌握了一个被称为"贡献法"的核武器。这种方法能将时间复杂度从O(n²)优化到O(n),将空间复杂度从O(n)压缩到O(1)。本文将深入剖析贡献法的核心思想,并通过5个经典案例揭示其精妙之处。一、贡献法的底层逻辑贡献法(Contrib
- 基于MATLAB的遗传算法优化BP神经网络航空发动机寿命预测
默默科研仔
发动机寿命预测matlab神经网络发动机寿命预测
基于MATLAB的遗传算法优化BP神经网络航空发动机寿命预测一、基本原理与优化框架遗传算法(GA)与BP神经网络的结合(GA-BP)主要通过全局搜索优化BP神经网络的初始权值和阈值,解决传统BP易陷入局部最优、收敛速度慢的问题。具体优化形式包括:初始参数优化:GA仅优化初始参数,后续仍依赖BP反向传播微调。全局参数优化:GA直接优化全部网络参数,无需BP参与。混合优化:GA优化初始参数后,再通过B
- 文字转动画视频软件(Animaker)
deepdata_cn
视频生成文字转视频
Animaker以动画制作为主的文字转视频软件。创建新项目导入文字后,可根据文字内容挑选合适模板和素材,软件自动结合生成初步视频,再利用编辑功能如剪辑、加特效、调颜色等进行优化。最初以提供基础的文字转动画功能和一些简单的模板为主,随着技术的不断进步和用户需求的增加,逐渐丰富了其功能和素材库,不断优化算法以提高生成动画的质量和效率,界面也变得更加友好和易用,在全球范围内获得了越来越多用户的认可,尤其
- 自动驾驶---打造自动驾驶系统之导航模块开发(三)
智能汽车人
从零打造自动驾驶算法仿真系统自动驾驶人工智能机器学习
各位读者朋友,大家好。本次打造的自动驾驶系统仿真系统,涉及感知,预测,规控等多个模块(以规控算法为主,包括Polynomial预测,MCTS决策算法,通行走廊Corridor构建,QP/CILQR轨迹生成求解器,LQR+PID的控制器等),同时也支持其它相关规控算法的扩展(部署&开发自身感兴趣的算法),非常便捷。笔者在该系列中开发的规控算法主要依据专栏《自动驾驶Planning决策规划》中的章节逐
- 【第15届蓝桥杯】软件赛CB组省赛
Guiat
算法竞赛真题题解蓝桥杯
个人主页:Guiat归属专栏:算法竞赛真题题解文章目录A.握手问题(填空题)B.小球反弹(填空题)C.好数D.R格式E.宝石组合F.数字接龙G.爬山H.拔河正文总共8道题。A.握手问题(填空题)【题目】握手问题【分析】纯考察数学中简单排列组合。考虑相互握手的43人:(43*42)/2;考虑剩下7人与43人分别握手:7*43;两者相加即最终答案。【答案】1204【AC_Code】#include#d
- java实现XZordering算法(附带源码)
Katie。
Java实战项目java算法开发语言
Java实现XZOrdering算法详解目录项目背景与简介1.1项目概述1.2开发动机与应用场景1.3XZOrdering算法简介相关理论知识与数学基础2.1空间映射与局部性保持2.2Morton编码(Z-order)的原理2.3位交叉(BitInterleaving)技术2.4算法复杂度与性能考量系统架构与模块设计3.1整体架构设计3.2主要模块划分3.3类图与流程图项目实现思路与详细设计4.1
- 深度学习框架PyTorch——从入门到精通(5)自动微分
Fansv587
深度学习pytorch人工智能
使用torch.autograd自动微分张量、函数和计算图计算梯度禁用梯度追踪关于计算图的更多信息张量梯度和雅可比乘积在训练神经网络时,最常用的算法是反向传播。在该算法中,参数(模型权重)根据损失函数的梯度相对于给定参数进行调整。为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持为任何计算图自动计算梯度。考虑最简单的一层神经网络,具有输入x、参数w和b以
- 消融实验(Ablation Study)
xwhking
深度学习机器学习深度学习消融实验
消融实验(AblationStudy)定义:消融实验是一种科学研究方法,通过逐步移除模型、算法或系统中的某个组件(如模块、层、特征、数据等),观察其对整体性能的影响,从而验证该组件的必要性和有效性。其名称来源于医学领域的“消融术”(切除部分组织以研究功能),在计算机视觉、机器学习和深度学习中被广泛用于分析模型设计。为什么要做消融实验?1.验证组件的有效性核心目的:确认模型中某个设计(如注意力机制、
- 刷算法Leetcode---4(字符串篇)
搞笑症患者
力扣刷算法leetcode算法
前言本文是根据代码随想录中的字符串顺序进行编写,只刷了里面力扣的题代码随想录其他文章链接:刷算法Leetcode文章汇总字符串篇344.反转字符串①双指针,前后交换②for循环,s[i]=s[n-i-1],与双指针思想相同541.反转字符串Ⅱjava中字符串不能修改,先转换为char数组for循环每2k个字符一组,组内使用双指针反转前k个字符,每次判断右指针是否越界151.反转字符串中单词①双指针
- 刷算法Leetcode---2(链表篇)
搞笑症患者
力扣刷算法算法leetcode链表
前言本文是第二篇跟Leetcode算法相关的文章,题目顺序是根据代码随想录刷的代码随想录其他文章链接:刷算法Leetcode文章汇总链表篇203.移除链表元素①设置空头节点,从头遍历链表②不设置空头结点,先对头节点判空,再看next707.设计链表自己设计ListNode类记得设置字段size,链表长度,用于判断index是否越界,注意add时size++,delete时size--①单向链表,不
- 手机租赁系统开发核心技术解析
红点租赁系统开发
其他
内容概要如果把手机租赁系统比作一台精密运转的智能管家,那它的骨架可不是用代码随便搭的乐高积木。这玩意儿得同时搞定三件事:让用户像刷短视频一样流畅下单,让风控系统比小区门禁还难糊弄,还得让物流信息比外卖小哥的定位更透明。想象一下,当你在APP里滑动挑选最新款折叠屏手机时,后台其实正在上演三重加密的信用评分大战——你的芝麻信用分、电商平台消费记录甚至社交账号活跃度,都被塞进算法熔炉里炼成租赁权限的通行
- 蓝桥杯Python赛道备赛——Day6:算术(二)(数学问题)
SKY YEAM
蓝桥杯备赛蓝桥杯python职场和发展
本期博客是蓝桥杯备赛中算术(数学问题)的第二期,包括:快速幂算法、逆元(模意义下的倒数)、组合数计算和排列数计算。每一种数学问题都在给出定义的同时,给出了其求解方法的示例代码,以供低年级师弟师妹们学习和练习。前序知识:(1)Python基础语法算术(二)(数学问题)一、快速幂算法二、逆元(模意义下的倒数)三、组合数计算四、排列数计算一、快速幂算法1.定义:快速计算大指数幂的算法。2.算法原理:二进
- 蓝桥杯Python赛道备赛——Day1:基础算法
SKY YEAM
蓝桥杯备赛蓝桥杯python算法
本博客就蓝桥杯中的基础算法(这一部分说是算法,但更是一些简单的操作)进行罗列,包括:枚举、模拟、前缀和、差分、二分查找、进制转换、贪心、位运算和双指针。每一个算法都在给出概念解释的同时,给出了示例代码,以供低年级师弟师妹们学习和练习。前序知识:(1)Python基础语法(2)PythonOOP(面向对象编程)基础算法(操作)一、枚举二、模拟三、前缀和四、差分五、二分查找六、进制转换七、贪心八、位运
- 数据集格式转换——json2txt、xml2txt、txt2json【复制就能用】
kay_545
YOLO11改进有效涨点python人工智能机器学习
秋招面试专栏推荐:深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转本专栏所有程序均经过测试,可成功执行专栏地址:YOLO11入门+改进涨点——点击即可跳转欢迎订阅目录json2txt脚本xml2txttxt2json
- 量子计算+AI:未来AI Agent的计算范式
AI天才研究院
计算ChatGPTDeepSeekRL强化学习agentagi推理模型智能驾驶
量子计算+AI:未来AIAgent的计算范式关键词:量子计算,人工智能,AIAgent,量子算法,量子机器学习,量子优化,量子数据处理摘要:量子计算和人工智能(AI)的结合正在改变AIAgent的计算范式。通过量子计算的超强算力和独特性质,AIAgent在数据处理、算法优化和决策能力方面展现出巨大潜力。本文将详细探讨量子计算与AI结合的核心概念、算法原理、系统架构,并通过实际案例展示量子AIAge
- AI人工智能深度学习算法:在量子计算中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着科技的不断发展,人工智能和量子计算成为了当今世界的热门话题。人工智能的深度学习算法在处理大规模数据和复杂任务方面取得了显著的成果,而量子计算则具有强大的并行计算能力和高效的信息处理能力。将人工智能与量子计算相结合,为解决一些具有挑战性的问题提供了新的思路和方法。本文将探讨人工智能深度学习算法在量子计算中的应用,包括其背景、意义和应用场景。2.核心概念与联系在人工智能中,深度学习是一
- Android第四次面试总结(基础算法篇)
每次的天空
android面试算法
一、反转链表//定义链表节点类classListNode{//节点存储的值intval;//指向下一个节点的引用ListNodenext;//构造函数,用于初始化节点的值ListNode(intx){val=x;}}classSolution{//反转链表的方法publicListNodereverseList(ListNodehead){//初始化前一个节点为nullListNodeprev=n
- 芒格的“清晰思考“方法在量子计算商业模式设计中的应用
AGI大模型与大数据研究院
DeepSeek量子计算网络运维ai
芒格的"清晰思考"方法在量子计算商业模式设计中的应用关键词:芒格、清晰思考方法、量子计算、商业模式设计、应用策略摘要:本文聚焦于将芒格的“清晰思考”方法应用于量子计算商业模式设计。首先介绍了背景信息,包括目的范围、预期读者等。接着阐述了核心概念,如“清晰思考”方法和量子计算商业模式的原理及联系,并给出相应示意图和流程图。详细讲解了核心算法原理及操作步骤,结合数学模型和公式进行说明。通过项目实战案例
- 分块查找算法
1haooo
算法java算法开发语言数据结构
分块的原则前一块的最大数据,小于后一窥啊中所有的数据(块内无序,块间有序)块数数量一般等于数字的个数开根号。比如:16个数字一般分为4块左右。publicclassblockSearch{publicstaticvoidmain(String[]args){int[]arr={16,5,9,12,21,18,32,23,37,26,45,34,50,48,61,52,73,66};//共18个元素
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
深度学习、模型架构、可拓展性、神经网络、机器学习1.背景介绍深度学习作为人工智能领域最前沿的技术之一,在图像识别、自然语言处理、语音识别等领域取得了突破性的进展。深度学习模型的成功离不开其强大的学习能力和可拓展性。本文将深入探讨深度学习算法的原理、模型架构设计以及可拓展性的关键要素,并通过代码实例和实际应用场景,帮助读者理解如何搭建可拓展的深度学习模型架构。2.核心概念与联系深度学习的核心概念是人
- 通俗的方式解释“零钱兑换”问题
程序员龙一
C++C/C++每日一问leetcodec++零钱兑换
“零钱兑换”是一道经典的算法题目,其主要问题是:给定不同面额的硬币和一个总金额,求出凑成总金额所需的最少硬币个数。如果没有任何一种硬币组合能组成总金额,返回-1。解题思路动态规划:使用动态规划是解决零钱兑换问题的常用方法。定义一个数组dp,其中dp[i]表示凑成金额i所需的最少硬币个数。状态转移方程:对于每个金额i,遍历所有硬币面额coin,如果i>=coin,则dp[i]=min(dp[i],d
- 【加密】常用加密算法
llzcxdb
java开发语言
非对称加密非对称加密是一种加密技术,也称为公钥加密。它使用一对密钥:公钥和私钥。公钥可以向任何人公开,用于加密信息,而私钥则是保密的,用于解密信息。这种加密方法确保了数据的安全传输,因为只有拥有对应私钥的人才能解密通过公钥加密的信息。非对称加密的一个主要特点是,即使公钥被他人获取,他们也无法解密密文,因为缺乏与之配对的私钥。常见的非对称加密算法包括RSA、椭圆曲线加密(ECC)和数字签名算法(DS
- 基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)
电力程序小学童
聚类matlabISODATA算法风电光伏
目录1主要内容聚类中心选取步骤核方法2部分代码3程序结果4程序链接1主要内容程序复现文献《基于机器学习的短期电力负荷预测和负荷曲线聚类研究》第三章《基于改进ISODATA算法的负荷场景曲线聚类》模型,该方法不止适用于负荷聚类,同样适用于风光等可再生能源聚类,只需要改变聚类的数据即可,该方法的通用性和可创新性强。该代码实现一种基于改进ISODATA算法的负荷场景曲线聚类方法,代码中,主要做了四种聚类
- 《基于机器学习的负荷曲线聚类算法对比与改进:K-L-isodata的创新性研究》
TWHiwhjig
机器学习算法聚类
基于机器学习的负荷曲线聚类包括kmeansisodata和改进的L-isodata以及在其基础上再次进行改进的K-L-isodata(有创新性),四者通过评价指标进行了对比精品代码可修改性极高有参考文献ID:93150688324967700自律的电气人基于机器学习的负荷曲线聚类是一种基于数据分析和模式识别的技术,它可以帮助我们对系统的负荷变化进行分类和理解。在负荷曲线聚类的研究中,K-means
- 动态规划-第4篇
藤椒味的火腿肠真不错
动态规划算法
19.最⼤⼦数组和(medium)1.题⽬链接:53.最大子数组和-力扣(LeetCode)2..解法(动态规划):算法思路:1.状态表⽰:对于线性dp,我们可以⽤「经验+题⽬要求」来定义状态表⽰:i.以某个位置为结尾,巴拉巴拉;ii.以某个位置为起点,巴拉巴拉。这⾥我们选择⽐较常⽤的⽅式,以「某个位置为结尾」,结合「题⽬要求」,定义⼀个状态表⽰:dp[i]表⽰:以i位置元素为结尾的「所有⼦数组」
- 光学工程师中年危机
光学设计培训
激光雷达光学设计zemax光学光学工程
一、技术能力突围:向高价值领域迁移瞄准增量市场激光雷达与自动驾驶:将光学设计经验迁移至激光雷达光路优化(如VCSEL阵列准直算法)、热稳定性补偿算法(解决车载环境温度漂移问题)15。AR/VR光学模组:参与超表面透镜(Metasurface)设计,结合波导与全息技术提升显示效率,掌握LightTools或LucidShape光场仿真37。强化算法能力光学-算法交叉技能:从
- P11451 [USACO24DEC] It‘s Mooin‘ Time B(枚举算法)
爱干饭的boy
算法竞赛题目超详细解析算法c语言c++青少年编程贪心算法推荐算法
题目描述FarmerJohn正在试图向Elsie描述他最喜欢的USACO竞赛,但她很难理解为什么他这么喜欢它。他说「竞赛中我最喜欢的部分是Bessie说『现在是哞哞时间』并在整个竞赛中一直哞哞叫」。Elsie仍然不理解,所以FarmerJohn将竞赛以文本文件形式下载,并试图解释他的意思。竞赛被定义为一个长度为$N$($3≤N≤20000$)的小写字母字符串。一种哞叫一般地定义为子串$c_ic_j
- 高亮动态物体——前景提取与动态物体检测器(opencv实现)
WenJGo
AI学习之路Python之路opencv计算机视觉人工智能深度学习神经网络
目录代码说明1.导入库2.创建背景建模对象3.打开视频源4.逐帧处理视频5.应用背景建模获得前景掩码6.形态学操作去除噪声6.1定义形态学核6.2开运算去除噪点6.3膨胀操作填补前景区域空洞7.轮廓检测识别动态物体8.绘制轮廓和边界框9.显示处理结果10.退出控制与资源释放整体代码效果展示代码说明主要功能是通过背景建模检测视频中的运动目标。其工作流程如下:读取视频帧;利用MOG2算法生成前景掩码;
- 蓝桥杯Python赛道备赛——Day8:动态规划(基础)案例分析
SKY YEAM
蓝桥杯备赛蓝桥杯python动态规划
本博客就上一期中讨论的蓝桥杯动态规划基础问题(包括:递推、记忆化搜索、最长公共子序列和最长上升子序列),给出了六个常见的案例问题。每一个问题都给出了其求解方法的示例代码,以供低年级师弟师妹们学习和练习。如有不懂,欢迎在评论区提问。前序知识:(1)Python基础语法(2)Day1:基础算法(3)Day7:动态规划(基础)动态规划(基础)案例分析一、递推应用:爬楼梯问题二、递推应用:零钱兑换三、记忆
- 思维链在可控核聚变等离子体控制中的应用:AI驱动的能源革命
AI大模型应用之禅
DeepSeek人工智能能源ai
概述《思维链在可控核聚变等离子体控制中的应用:AI驱动的能源革命》旨在探讨AI技术在可控核聚变等离子体控制中的实际应用,以及如何通过思维链实现能源革命。本文将从以下几个方面展开讨论:核聚变等离子体控制背景、思维链技术介绍、AI在等离子体控制中的应用、算法原理与实现、系统设计与实现、项目实战以及最佳实践与展望。一、核聚变等离子体控制背景核聚变是一种通过将轻原子核在高温高压下聚合成更重的原子核,释放出
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置