YOLOV5白皮书-第Y2周:训练自己的数据集

我的环境:
•语言环境:Python3.9
•编译器:PyCharm
•深度学习环境:
。torch= = 1.10.0+cu113
。torchvision ==0.11.1 +cu113
•显卡:GeForce RTX 3060
,可供学习使用数据集:水果检测

一、准备自己的数据

YOLOV5白皮书-第Y2周:训练自己的数据集_第1张图片

二、运行 split_train_val.py 文件

ImageSets文件夹下面有个Main子文件夹,其下面存放了 train.txt、val.txt、test.txt和 trainval.txt四个文件,它们是通过split_train_val.py文件来生成的。
split_train_val.py文件的位置:
YOLOV5白皮书-第Y2周:训练自己的数据集_第2张图片
split_train_val.py 的内容如下:

# 划分train、test、val文件
import os
import random
import argparse

parser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='annotations', type=str, help='input txt label path')
# 数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='Imagesets/Main', type=str, help='output txt label path')
opt = parser.parse_args()

trainval_percent = 1
train_percent = 0.9
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)

file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')


for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)

file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

运行 split_train_val.py 文件后你将得至train.txt、val.txt、test.txt 和 trainval.txt 四 个文件,结果如下:
YOLOV5白皮书-第Y2周:训练自己的数据集_第3张图片
注:如修改数据集中训练集.验证集.测试集的比例,请参考:

YOLOV5白皮书-第Y2周:训练自己的数据集_第4张图片
YOLOV5白皮书-第Y2周:训练自己的数据集_第5张图片

三、生成 train.txt test.txt val.txt 文件

我们要生成的文件位置

YOLOV5白皮书-第Y2周:训练自己的数据集_第6张图片
现在我们需要的是voc_label.py文件。
注意:这里的classes = [“banana”, “snake fruit”, “dragon fruit”, “pineapple”] # 改成自己的类别

import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ["banana", "snake fruit", "dragon fruit", "pineapple"]  # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h



def convert_annotation(image_id):
    in_file = open('./annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('./labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue

        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()
for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('./ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('./%s.txt' % (image_set),'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/images/%s.png\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

运行voc_label.py文件,你将会得到train.txt、test.txt、val.txt三个文件, 文件内容如下

YOLOV5白皮书-第Y2周:训练自己的数据集_第7张图片
val.txt
YOLOV5白皮书-第Y2周:训练自己的数据集_第8张图片
注意: 我这里是乱码,因为我用了中文目录,但不影响运行

四、创建ab.yaml文件

这个文件名是我随意取的,这个可以做出改变的,ab.yaml文件的位置如下:

YOLOV5白皮书-第Y2周:训练自己的数据集_第9张图片
我的ab.yaml文件内容如下:

train: ./paper_data/train.txt
val: ./paper_data/val.txt

nc: 4

names: ["banana", "snake fruit", "dragon fruit", "pineapple"]

注意,这里的names要改为自己的类别。同时,nc要修改为类别个数。

五、开始用自己的数据集训练模型

输入命令:

python train.py --img 900 --batch 2 --epoch 100 --data paper_data/ab.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt

输出结果:

train: weights=yolov5s.pt, cfg=models/yolov5s.yaml, data=paper_data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=F
alse, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False,
 workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2022-12-7 Python-3.9.15 torch-1.13.0+cpu CPU

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0
, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
ClearML: run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5  in ClearML
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4

                 from  n    params  module                                  arguments
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]
  2                -1  1     18816  models.common.C3                        [64, 64, 1]
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]
  4                -1  2    115712  models.common.C3                        [128, 128, 2]
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]
  6                -1  3    625152  models.common.C3                        [256, 256, 3]
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]
  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 12           [-1, 6]  1         0  models.common.Concat                    [1]
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 16           [-1, 4]  1         0  models.common.Concat                    [1]
 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]
 19          [-1, 14]  1         0  models.common.Concat                    [1]
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]
 22          [-1, 10]  1         0  models.common.Concat                    [1]
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          
 24      [17, 20, 23]  1     24273  models.yolo.Detect                      [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]  
YOLOv5s summary: 214 layers, 7030417 parameters, 7030417 gradients, 16.0 GFLOPs

Transferred 308/349 items from yolov5s.pt
WARNING  --img-size 900 must be multiple of max stride 32, updating to 928
optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias
train: Scanning E:\doc\1.学院\3.学习培训\21.365深度学习训练营\y2\yolov5-master\paper_data\train... 180 images, 0 backgrounds, 0 corrupt: 100%|██████████| 180/180 [00:06<00:00, 28.48it
train: WARNING  Cache directory E:\doc\1.\3.\21.365\y2\yolov5-master\paper_data is not writeable: [WinError 183] : 'E:\\doc\\1.\\3.\\21.365\\y2\\yolov5-master\\paper_data\\train.cache.npy' -> 'E:\\doc\\1.\\3.\\21.365\\y2\\yolov5-master\\paper_data\\train.cache'
val: Scanning E:\doc\1.学院\3.学习培训\21.365深度学习训练营\y2\yolov5-master\paper_data\val... 20 images, 0 backgrounds, 0 corrupt: 100%|██████████| 20/20 [00:06<00:00,  3.07it/s]
val: New cache created: E:\doc\1.\3.\21.365\y2\yolov5-master\paper_data\val.cache

AutoAnchor: 4.82 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset
Plotting labels to runs\train\exp15\labels.jpg... 
Image sizes 928 train, 928 val
Using 2 dataloader workers
Logging results to runs\train\exp15
Starting training for 100 epochs...

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       0/99         0G     0.1211     0.0558    0.05001          9        928:   0%|          | 0/90 [00:02<?, ?it/s]WARNING  TensorBoard graph visualization failure Sizes of tensors must match except in dimension 1. Expected size 58 but got size 57 for tensor number 1 in the list.
       0/99         0G     0.1056     0.0601    0.04505         11        928: 100%|██████████| 90/90 [03:18<00:00,  2.20s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95:  20%|██        | 1/5 [00:01<00:05,  1.32s/it]WARNING  NMS time limit 0.700s exceeded
                 Class     Images  Instances          P          R      mAP50   mAP50-95:  40%|████      | 2/5 [00:03<00:05,  1.72s/it]WARNING  NMS time limit 0.700s exceeded
                 Class     Images  Instances          P          R      mAP50   mAP50-95:  60%|██████    | 3/5 [00:05<00:03,  1.86s/it]WARNING  NMS time limit 0.700s exceeded
                 Class     Images  Instances          P          R      mAP50   mAP50-95:  80%|████████  | 4/5 [00:07<00:01,  1.85s/it]WARNING  NMS time limit 0.700s exceeded
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:09<00:00,  1.81s/it]
                   all         20         60          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       1/99         0G    0.08738    0.06344    0.03942          5        928: 100%|██████████| 90/90 [02:56<00:00,  1.97s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.19s/it]
                   all         20         60    0.00934      0.912     0.0419    0.00868

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       2/99         0G    0.07767    0.06266    0.03367         13        928: 100%|██████████| 90/90 [02:57<00:00,  1.97s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:06<00:00,  1.30s/it]
                   all         20         60    0.00679       0.62    0.00761    0.00173

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       3/99         0G    0.07745    0.05135    0.02945         17        928: 100%|██████████| 90/90 [02:57<00:00,  1.97s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.06s/it]
                   all         20         60     0.0218      0.921     0.0483     0.0114

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       4/99         0G    0.07231    0.04728    0.02629          7        928: 100%|██████████| 90/90 [02:57<00:00,  1.97s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.05s/it]
                   all         20         60      0.152       0.62      0.196     0.0655

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       5/99         0G     0.0698    0.04278    0.02369         18        928: 100%|██████████| 90/90 [02:57<00:00,  1.97s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.04s/it]
                   all         20         60      0.259      0.588      0.367      0.155

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       6/99         0G    0.06335    0.03941    0.02255         13        928: 100%|██████████| 90/90 [02:57<00:00,  1.97s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.03s/it]
                   all         20         60      0.237      0.604      0.443      0.215

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       7/99         0G    0.05831    0.03681    0.02154          7        928: 100%|██████████| 90/90 [02:57<00:00,  1.97s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.03s/it]
                   all         20         60       0.46        0.6      0.409      0.146

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       8/99         0G    0.06084    0.03499    0.02064         16        928: 100%|██████████| 90/90 [02:55<00:00,  1.95s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.02s/it]
                   all         20         60      0.743        0.6      0.676       0.29

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       9/99         0G    0.05665    0.03497    0.01896         10        928: 100%|██████████| 90/90 [02:58<00:00,  1.98s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.03s/it]
                   all         20         60      0.591      0.779      0.808      0.313

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      10/99         0G    0.05506    0.03503    0.01872         18        928: 100%|██████████| 90/90 [02:56<00:00,  1.96s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.03s/it]
                   all         20         60      0.688      0.818      0.854      0.376

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      11/99         0G      0.051    0.03416    0.01733         15        928: 100%|██████████| 90/90 [02:56<00:00,  1.96s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.02s/it]
                   all         20         60       0.64      0.683      0.836      0.359

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      12/99         0G    0.05272     0.0319    0.01605         14        928: 100%|██████████| 90/90 [02:56<00:00,  1.96s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.03s/it]
                   all         20         60      0.728      0.841      0.873        0.5

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      13/99         0G    0.04572    0.03122    0.01514         13        928: 100%|██████████| 90/90 [03:00<00:00,  2.01s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:05<00:00,  1.05s/it]
                   all         20         60      0.525      0.792      0.773      0.417

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      14/99         0G    0.04438    0.03155    0.01424         23        928: 100%|██████████| 90/90 [02:55<00:00,  1.95s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.07it/s]
                   all         20         60      0.561      0.904      0.894      0.433

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      15/99         0G    0.04381    0.02858    0.01276         23        928: 100%|██████████| 90/90 [02:41<00:00,  1.80s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.00it/s]
                   all         20         60      0.627      0.834      0.851      0.475

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      16/99         0G    0.04439    0.02928    0.01195          5        928: 100%|██████████| 90/90 [02:43<00:00,  1.82s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.05it/s]
                   all         20         60      0.774      0.841      0.885      0.507

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      17/99         0G    0.04548    0.02568   0.009813         14        928: 100%|██████████| 90/90 [02:41<00:00,  1.80s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.07it/s]
                   all         20         60      0.684       0.93      0.881      0.557

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      18/99         0G    0.04013    0.02926    0.01151         11        928: 100%|██████████| 90/90 [02:41<00:00,  1.80s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.08it/s]
                   all         20         60      0.851      0.944      0.959      0.658

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      19/99         0G    0.03894    0.02951   0.008872          7        928: 100%|██████████| 90/90 [02:41<00:00,  1.79s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.08it/s]
                   all         20         60      0.928      0.954      0.986      0.636

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      20/99         0G    0.03955    0.02666    0.00873          8        928: 100%|██████████| 90/90 [02:41<00:00,  1.79s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.06it/s]
                   all         20         60       0.87      0.957      0.981      0.536

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      21/99         0G    0.04063    0.02842   0.007628         10        928: 100%|██████████| 90/90 [02:41<00:00,  1.79s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.08it/s]
                   all         20         60      0.928      0.944      0.982      0.546

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      22/99         0G     0.0395    0.02729   0.007109         11        928: 100%|██████████| 90/90 [02:40<00:00,  1.79s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.08it/s]
                   all         20         60      0.906      0.949      0.977      0.587

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      23/99         0G    0.03845    0.02439     0.0067          9        928: 100%|██████████| 90/90 [02:40<00:00,  1.79s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.08it/s]
                   all         20         60      0.792      0.928      0.948      0.618

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      24/99         0G    0.03753    0.02705   0.006873         13        928: 100%|██████████| 90/90 [02:45<00:00,  1.84s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.875      0.962      0.976      0.671

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      25/99         0G    0.03344    0.02463   0.006468         10        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.849      0.968       0.96      0.644

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      26/99         0G    0.03553    0.02689    0.00649          9        928: 100%|██████████| 90/90 [02:47<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60       0.75      0.945      0.899      0.623

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      27/99         0G    0.03316    0.02471   0.005116         12        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.797      0.971      0.965      0.695

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      28/99         0G     0.0344    0.02363    0.00567         15        928: 100%|██████████| 90/90 [02:47<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.795      0.952      0.961      0.641

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      29/99         0G    0.03334    0.02373    0.00489         11        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.921      0.971      0.984      0.713

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      30/99         0G    0.03192    0.02439   0.006354          5        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.945      0.988      0.988      0.706

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      31/99         0G    0.03468    0.02568   0.006189          7        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.956      0.984      0.986      0.717

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      32/99         0G    0.03359    0.02325   0.004633         13        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60        0.9       0.98      0.972      0.729

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      33/99         0G    0.03396    0.02579   0.005256         14        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.969      0.974      0.985      0.685

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      34/99         0G    0.03294     0.0237   0.004858         17        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.859      0.977      0.983      0.746

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      35/99         0G    0.03106    0.02374   0.004119         24        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.974      0.974      0.987       0.72

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      36/99         0G    0.03063    0.02372   0.003885          9        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.988      0.994      0.995      0.719

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      37/99         0G    0.03069    0.02239   0.003554          7        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.987      0.999      0.995      0.722

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      38/99         0G     0.0306    0.02406   0.004276         17        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.986      0.987      0.995      0.671

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      39/99         0G    0.03037    0.02309   0.004153          7        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.988      0.988      0.995      0.788

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      40/99         0G     0.0274    0.02272   0.003755         12        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.989      0.989      0.995       0.77

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      41/99         0G    0.02877     0.0221     0.0041          6        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.02it/s]
                   all         20         60      0.987      0.985      0.995      0.761

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      42/99         0G    0.02875    0.02292   0.003007         14        928: 100%|██████████| 90/90 [02:48<00:00,  1.88s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.987      0.966      0.992      0.715

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      43/99         0G    0.02863    0.02398   0.003227          9        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.961      0.996      0.994      0.731

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      44/99         0G    0.02858    0.02116   0.003865         21        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60       0.97      0.993      0.995      0.797

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      45/99         0G    0.02632    0.02006   0.003483          7        928: 100%|██████████| 90/90 [02:48<00:00,  1.88s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.847      0.957       0.99      0.776

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      46/99         0G     0.0271    0.02305   0.003096          9        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.973      0.994      0.995      0.751

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      47/99         0G     0.0274    0.02358   0.003008          9        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.982      0.993      0.995      0.773

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      48/99         0G    0.02708    0.02264     0.0036          9        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.976      0.994      0.995      0.778

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      49/99         0G    0.02597    0.02265   0.002325         17        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.981      0.992      0.995      0.798

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      50/99         0G    0.02592    0.02098   0.003093         10        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.946      0.974      0.991        0.8

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      51/99         0G    0.02549    0.01992   0.003059          7        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60       0.98      0.975      0.993      0.765

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      52/99         0G    0.02612    0.02144   0.003005          8        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.984      0.992      0.995      0.763

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      53/99         0G    0.02559    0.02263   0.002611         13        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60       0.97      0.988      0.995      0.821

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      54/99         0G    0.02491    0.02004   0.002507         16        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.976      0.992      0.995      0.789

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      55/99         0G    0.02476    0.02248   0.003541         11        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.983      0.994      0.995      0.835

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      56/99         0G    0.02416    0.02057   0.002543          7        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.969      0.981      0.993      0.782

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      57/99         0G     0.0247    0.02049   0.003057          9        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.966      0.982      0.994      0.806

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      58/99         0G    0.02251    0.02066   0.002434         14        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.983      0.994      0.995      0.758

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      59/99         0G    0.02361     0.0211   0.002272          8        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.984      0.997      0.995      0.775

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      60/99         0G    0.02351    0.01995   0.002283         14        928: 100%|██████████| 90/90 [02:48<00:00,  1.88s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.02it/s]
                   all         20         60      0.985      0.995      0.995      0.818

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      61/99         0G    0.02341    0.02245   0.003217         14        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.976      0.996      0.995      0.821

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      62/99         0G    0.02281    0.02112   0.001963         10        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.979      0.992      0.995      0.811

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      63/99         0G    0.02321    0.02098   0.002418         13        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60       0.98      0.993      0.995      0.819

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      64/99         0G    0.02302    0.02106   0.002212          9        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.982      0.976      0.993       0.83

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      65/99         0G     0.0231      0.021   0.002807          8        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.977      0.993      0.995       0.81

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      66/99         0G    0.02257    0.02045   0.001738         12        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.985      0.989      0.995      0.829

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      67/99         0G    0.02163    0.01999   0.001787          7        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.985       0.99      0.995      0.811

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      68/99         0G    0.02155    0.02035   0.002539          6        928: 100%|██████████| 90/90 [02:48<00:00,  1.88s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.987      0.993      0.995      0.832

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      69/99         0G    0.02169    0.01939   0.002132         11        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.987      0.992      0.995      0.849

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      70/99         0G    0.02087    0.01953   0.002244          6        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.987      0.995      0.995      0.838

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      71/99         0G    0.02074    0.01855   0.002009          7        928: 100%|██████████| 90/90 [02:47<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.987      0.994      0.995      0.848

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      72/99         0G    0.01967    0.01967   0.001669         12        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.984      0.983      0.984       0.83

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      73/99         0G     0.0208     0.0202   0.001607          7        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.983      0.979      0.987      0.831

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      74/99         0G    0.01984     0.0187    0.00194         10        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.983      0.979      0.986      0.829

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      75/99         0G    0.02075    0.01917   0.001813          9        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.985      0.991      0.995      0.835

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      76/99         0G    0.02018    0.01926   0.001293         14        928: 100%|██████████| 90/90 [02:47<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.989      0.992      0.995      0.857

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      77/99         0G    0.02065    0.01968   0.001775         11        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.989      0.989      0.995      0.846

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      78/99         0G    0.01955    0.01961   0.001545         10        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.987      0.992      0.995      0.846

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      79/99         0G    0.01911    0.01881    0.00171         10        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.988      0.992      0.995      0.846

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      80/99         0G    0.01912    0.01777   0.001713         13        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.985      0.994      0.995      0.831

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      81/99         0G    0.02033    0.02024   0.002025         18        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.986      0.991      0.995       0.84

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      82/99         0G    0.01905    0.01925   0.001558         10        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.989      0.992      0.995      0.836

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      83/99         0G    0.01889    0.01882   0.001722         15        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.988       0.99      0.995      0.845

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      84/99         0G    0.01813    0.01962   0.003011          6        928: 100%|██████████| 90/90 [02:47<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.02it/s]
                   all         20         60      0.987      0.995      0.995      0.858

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      85/99         0G    0.01877    0.01951   0.001948          6        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.987      0.998      0.995      0.853

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      86/99         0G    0.01812    0.01907   0.001587         18        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.987      0.997      0.995      0.846

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      87/99         0G     0.0181    0.01792   0.002081         15        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.987      0.998      0.995      0.867

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      88/99         0G    0.01702    0.01824   0.001836          8        928: 100%|██████████| 90/90 [02:47<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.02it/s]
                   all         20         60      0.988      0.999      0.995      0.868

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      89/99         0G    0.01761    0.01849   0.001372         14        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60       0.99      0.998      0.995      0.863

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      90/99         0G    0.01774    0.01732   0.001869         15        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.987      0.997      0.995      0.871

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      91/99         0G    0.01756    0.01916   0.001809         15        928: 100%|██████████| 90/90 [02:47<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60       0.99      0.996      0.995      0.869

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      92/99         0G     0.0179    0.01904   0.001088         11        928: 100%|██████████| 90/90 [02:47<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60       0.99      0.999      0.995      0.865

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      93/99         0G    0.01724    0.01819   0.001318          7        928: 100%|██████████| 90/90 [02:47<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.04it/s]
                   all         20         60      0.989      0.995      0.995      0.866

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      94/99         0G     0.0175    0.01806   0.001875          7        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.988      0.998      0.995      0.866

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      95/99         0G    0.01682    0.01935   0.001596         15        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.988      0.999      0.995      0.876

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      96/99         0G    0.01717    0.01848   0.001317         14        928: 100%|██████████| 90/90 [02:47<00:00,  1.86s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.984      0.997      0.995      0.877

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      97/99         0G    0.01627    0.01685   0.002426         12        928: 100%|██████████| 90/90 [02:48<00:00,  1.87s/it]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.03it/s]
                   all         20         60      0.988      0.997      0.995       0.87

                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:04<00:00,  1.13it/s]
                   all         20         60      0.986      0.997      0.995      0.878
                banana         20         16      0.992          1      0.995      0.933
           snake fruit         20         20       0.99          1      0.995       0.79
          dragon fruit         20         11      0.962          1      0.995      0.912
             pineapple         20         13          1      0.988      0.995      0.876
Results saved to runs\train\exp15

你可能感兴趣的:(python,深度学习)