- 鸿蒙HarmonyOS EventHub模块
yj235532
鸿蒙harmonyos鸿蒙开发移动开发harmonyos鸿蒙鸿蒙开发UI组件化
一、引言EventHub模块在HarmonyOS应用开发中扮演着重要角色,它提供了事件中心的功能,包括事件订阅、取消订阅以及触发事件等操作,为应用内的模块间通信提供了有效的机制。二、模块基本信息接口支持版本:首批接口从APIversion9开始支持,后续版本的新增接口采用上角标单独标记起始版本。适用模型:本模块接口仅可在Stage模型下使用。三、导入模块在使用EventHub功能前,需导入相关模块
- 关于自动化测试
AIZHINAN
log4j
B站讲的最好的自动化测试教程,工具+框架附项目实战一套速通,零基础完全轻松掌握!自动化测试课程、web/app/接口概述常见的三类自动化测试有:单元测试,集成测试以及功能测试。单元测试单元测试是一个白盒测试,一般是针对一个方法单元进行的测试,单元测试要求运行快,编写简单。所以一般单元测试有这么一些特质:不连接数据库不访问磁盘文件不访问远程网络能够在很短时间内运行完毕(比如三秒内)集成测试集成测试可
- ChatGPT驱动的跨学科研究灵感挖掘指南
学境思源AcademicIdeas
学境思源AI写作ChatGPTchatgpt
跨学科研究已成为解决复杂问题的重要手段。学境思源,无论是人工智能与心理学的结合,一键生成论文初稿!还是生态学与经济学的融合,越来越多的研究者正试图打破学科界限,探索全新问题域。但问题是:acaids.com。我们如何高效发现这些跨学科交叉点?使用传统方式,像文献综述、领域专家访谈或大型头脑风暴虽有效,但耗时,且受限于已有认知。今天为大家分享一种高效、智能、可复制的方法——利用ChatGPT进行跨学
- 大模型本地部署,拥有属于自己的ChatGpt
小妖同学学AI
chatgpt
ChatGpt以其强大的信息整合和对话能力惊艳了全球,在自然语言处理上面表现出了惊人的能力。不管用于文案撰写还是程序辅助开发都大大提高了我们的工作效率,但是其使用有一定的门槛,让我们大多数人都望而却步,今天我们利用ollama实现本地大模型的步骤,让我们轻松拥有自己的人工智能。Ollama作为一个轻量级的工具,可以帮助用户在本地运行这些大型语言模型,无需持续依赖云服务,既保护了数据隐私,又能减少网
- 事件循环(Event Loop)机制对比:Node.js vs 浏览器
1.共同点:基本事件循环模型两者都基于"任务队列+循环处理"的机制:主线程执行同步代码。异步任务(如I/O、定时器)完成后,回调函数被放入任务队列。事件循环不断检查队列,按规则取出任务执行。2.核心区别(1)任务队列类型不同浏览器Node.js宏任务(Macrotask):•script(整体代码)•setTimeout/setInterval•DOM事件回调(如点击)•requestAnimat
- 进程与线程的联系和区别?
Owen_Xp
JavaEEjava面试开发语言
1、线程的基本概念概念:线程是进程中执行运算的最小单位,是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点在运行中必不可少的资源,但它可与同属一个进程的其它线程共享进程所拥有的全部资源。一个线程可以创建和撤消另一个线程,同一进程中的多个线程之间可以并发执行。好处:(1)易于调度。(2)提高并发性。通过线程可方便有效地实现并发性。进程可创建多个线程来执行同一程序
- 技术开发全流程管理:涵盖天线系统的仿真建模(HFSS/CST等)、原型设计、调试优化(网络分析仪/暗室测试)到量产导入(LDS工艺识别),需主导技术文档编写(设计规范/测试报告)。
百态老人
网络设计规范
以下是针对天线系统技术开发全流程管理的完整解析,涵盖仿真建模、原型设计、调试优化、量产导入及技术文档编写五大环节,结合行业实践与资料核心信息进行系统阐述:一、仿真建模(HFSS/CST)1.软件选择与算法差异HFSS:基于有限元法(FEM),擅长电小尺寸、窄带天线设计(如微带天线、滤波电路),可精确计算辐射方向图、增益、S参数等。其自适应网格技术确保高精度,但计算资源消耗大,不适于电大尺寸模型。C
- DOP数据开放平台(真实线上项目)
JAVA拾贝
java数据开放平台接口开放平台监控限流接口过滤自动文档
什么是数据开放平台?数据开放平台是一种通过公开应用程序编程接口(API)或结构化数据,允许第三方开发者或机构访问、使用和共享数据的平台,旨在促进数据流通、打破信息孤岛并激发创新应用。DOP数据开放平台简单演示DOP数据开放平台(JAVA语言)DOP数据开放平台优势网址:DOP数据开放平台商户可自行注册,管理员开放权限访问接口向下兼容,方便版本迭代响应报文过滤,数据更安全支持监控限流,服务更稳定自
- 使用 Xinference 命令行工具(xinference launch)部署 Nanonets-OCR-s
没刮胡子
Linux服务器技术人工智能AI软件开发技术实战专栏ocr
使用Xinference命令行工具(xinferencelaunch)部署Nanonets-OCR-s一、核心优势与适用场景通过xinferencelaunch命令可直接在命令行完成模型部署,无需编写Python代码,适合快速验证或生产环境批量部署。二、部署步骤:从命令行启动模型1.确认环境与依赖已安装Xinference:pipinstall"xinference[all]"GPU显存≥9GB(
- Spring AI 结合 MCP MySQL 实现对话式数据库查询
没刮胡子
软件开发技术实战专栏人工智能AISpring数据库spring人工智能spring-aimcp-servermysql
在现代应用开发中,将人工智能与数据库查询结合可以创造更自然、更智能的用户交互方式。下面我将详细介绍如何使用SpringAI框架结合MCP(可能指MySQL连接池或相关组件)实现对话中的数据库查询功能。什么是SpringAI和MCPMySQLSpringAI框架概述SpringAI是基于Spring生态的人工智能集成框架,它提供了:与大型语言模型(LLM)的集成能力对话管理和自然语言处理功能业务逻辑
- AingDesk开源免费的本地 AI 模型管理工具(搭建和调用MCP)
没刮胡子
Linux服务器技术软件开发技术实战专栏人工智能AI开源人工智能AI助手mcpsse知识库智能体
说明AingDesk是一款开源免费的本地AI模型管理工具,旨在简化AI模型部署流程并提升用户体验。AingDesk支持本地AI模型及API+知识库搭建。支持知识库、模型API、分享、联网搜索、智能体。✨产品亮点跨平台支持客户端支持Windows、macOS,服务端可通过Docker部署高效下载与网络优化自动选择最优下载线路,支持断点续传,提升大模型部署速度兼容OpenAIAPI格式,方便第三方模型
- MiniMax - M1:开源大模型的革命性突破
开源大模型MiniMax-M1研究报告一、引言在人工智能技术飞速发展的当下,大模型领域的竞争愈发激烈。开源大模型以其开放性、可定制性和社区协作的优势,逐渐成为推动人工智能技术进步的重要力量。MiniMax-M1作为全球首个开源大规模混合架构的推理模型,一经发布便引起了广泛关注。它在长上下文处理、推理效率和成本控制等方面展现出了卓越的性能,为人工智能的发展带来了新的思路和方向。本文将对MiniMax
- ss928v100模型的导出、量化和转换
yunken28
python开发语言
1、yolov8导出为onnxfromultralyticsimportYOLOmodel=YOLO("./best.pt")model.export(format="onnx",imgsz=640,dynamic=False,simplify=True,opset=11,batch=1,half=False)以下是model.export()方法各参数的详细解释:format="onnx"指
- 容器化与微服务
何遇mirror
服务器容器微服务
目录编辑第一节:容器化与微服务第二节:Docker与Kubernetes的介绍第三节:容器与传统虚拟化的对比第四节:微服务架构与虚拟化实际案例分析第一节:容器化与微服务容器化与微服务概述容器化是一种轻量级的虚拟化技术,它允许开发者将应用程序及其依赖项打包成一个可移植的容器。微服务架构则是一种将大型应用程序分解为小的、独立的服务的方法,这些服务可以独立部署、扩展和维护。容器化的优势轻量级:容器使用共
- Linux 命令:cd
hweiyu00
Linux命令linux运维
Linuxcd命令详细教程一、cd命令概述cd是Linux系统中用于切换工作目录的核心命令,全称“changedirectory”。它是文件导航的基础工具,通过绝对路径、相对路径或特殊符号,可快速在文件系统中移动,掌握其用法是Linux操作的必备技能。资料已经分类整理好:https://pan.quark.cn/s/26d73f7dd8a7二、cd命令基本语法cd[目标目录]核心参数说明:目标目录
- 深度学习使用Pytorch训练模型步骤
vvvdg
深度学习pytorch人工智能
训练模型是机器学习和深度学习中的核心过程,旨在通过大量数据学习模型参数,以便模型能够对新的、未见过的数据做出准确的预测。训练模型通常包括以下几个步骤:1.数据准备:收集和处理数据,包括清洗、标准化和归一化。将数据分为训练集、验证集和测试集。2.定义模型:选择模型架构,例如决策树、神经网络等。初始化模型参数(权重和偏置)。3.选择损失函数:根据任务类型(如分类、回归)选择合适的损失函数。4.选择优化
- 常见的强化学习算法分类及其特点
ywfwyht
人工智能算法分类人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,通过智能体(Agent)与环境(Environment)的交互来学习如何采取行动以最大化累积奖励。以下是一些常见的强化学习算法分类及其特点:1.基于值函数的算法这些算法通过估计状态或状态-动作对的价值来指导决策。Q-Learning无模型的离线学习算法。通过更新Q值表来学习最优策略。更新公式:Q(s,a)←Q(s,a)
- 公文写作指令
andyyah晓波
指令合集人工智能
公文写作指令️KIMI应用介绍“KIMI是一款便捷的应用程序,用户可以通过电脑或手机轻松访问和使用。”电脑端访问在电脑上使用KIMI应用,用户可以通过百度搜索“KIMI”来找到相关信息和链接。手机端访问对于手机用户,可以在手机应用商店中搜索“KIMI”来下载和安装该应用。访问方式总结设备类型访问方式电脑百度搜索“KIMI”手机手机应用商店搜索“KIMI”使用KEMIE生成会议通知“使用KEMIE可
- 2025年化学工程与复合材料国际会议(ICCECM 2025)
学术-罗老师
理工科人工智能
2025InternationalConferenceonChemicalEngineeringandCompositeMaterials一、大会信息会议简称:ICCECM2025大会地点:中国·苏州收录检索:提交EiCompendex,CPCI,CNKI,GoogleScholar等二、会议简介为促进我国复合材料和化学工程规范、可持续、健康发展,增强科技创新能力,促进跨学科融合和产学研结合,了解
- Scikit-learn:机器学习的「万能工具箱」
科技林总
DeepSeek学AI人工智能
——三行代码构建AI模型的全栈指南**###**一、诞生背景:让机器学习从实验室走向大众****2010年前的AI困境**:-学术界模型难以工程化-算法实现碎片化(MATLAB/C++主导)-企业应用门槛极高>**破局者**:DavidCournapeau发起*Scikit-learn*项目,**统一算法接口**+**Python简易语法**=机器学习民主化革命---###**二、设计哲学:一致性
- Edge-TTS在广电系统中的语音合成技术的创新应用
Edge-TTS在广电系统中的语音合成技术的创新应用作者:本人是一名县级融媒体中心的工程师,多年来一直坚持学习、提升自己。喜欢Python编程、人工智能、网络安全等多领域的技术。摘要随着人工智能技术的快速发展,文字转语音(Text-to-Speech,TTS)系统已成为多种应用的重要组成部分,尤其在广播电视领域。本文介绍了一种基于Edge-TTS大模型的文字转语音工具,该工具结合了现代文本处理和语
- 数据库的查询
爱吃草莓的土拨鼠️
数据库
一.单表查询1.简单数据查询a.显示指定字段列:使用“*”显示全部字段列;列出字段名显示指定字段列。b.显示字段列别名:使用AS关键字为字段指定别名,方便理解。c.显示计算的列值:通过算术运算符(+-*/%)对字段进行计算,得到新的列值。d.消除重复行:使用DISTINCT参数消除查询结果中的重复行。e.限制行数:利用LIMIT控制返回的行数,可指定偏移量和行数。f.排序:ORDERBY子句按指定
- Selenium测试安全策略:防止逆向工程
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构selenium网络tcp/ipai
Selenium测试安全策略:防止逆向工程关键词:Selenium自动化测试、逆向工程、代码安全、敏感信息保护、测试脚本防护摘要:本文从Selenium自动化测试的实际场景出发,深入解析测试脚本面临的逆向工程风险(如敏感信息泄露、测试逻辑被破解),通过生活案例类比技术概念,系统讲解代码混淆、敏感信息加密、日志脱敏等核心安全策略,并提供可落地的实战代码与工具推荐,帮助测试人员构建“防逆向”的安全测试
- Serverless架构下的持续交付实践
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构serverless架构运维ai
Serverless架构下的持续交付实践关键词:Serverless架构、持续交付、DevOps、无服务器计算、自动化部署摘要:本文深入探讨了Serverless架构下的持续交付实践。首先介绍了Serverless架构和持续交付的背景知识,接着解释了相关核心概念及其关系,详细阐述了核心算法原理与操作步骤,通过数学模型加深理解,结合实际项目案例展示了代码实现与解读,探讨了实际应用场景,推荐了相关工具
- 【大模型】Transformer架构完全解读:从“盲人摸象“到“通晓万物“的AI进化论
全栈追梦人
大模型#提示工程transformer架构深度学习
Transformer架构完全解读:从"盲人摸象"到"通晓万物"的AI进化论——一位大模型探索者的技术日记☕第一章:为什么说Transformer是AI界的"蒸汽机革命"?1.1从RNN到Transformer:一场效率革命场景:咖啡厅里两位开发者的对话实习生小雨:“学长,为什么现在都用Transformer?RNN不是也能处理文本吗?”资深工程师老张:(掏出纸巾画图)“想象RNN是个严格的图书管
- 非结构化数据真“野”?聊聊AI处理它时踩过的那些坑
Echo_Wish
Python进阶人工智能
非结构化数据真“野”?聊聊AI处理它时踩过的那些坑在AI圈子里有一句“老话”:真正的世界,是非结构化的。图像、音频、视频、文本、传感器原始数据……这些在数据库里没个字段、没个主键的家伙,占据了全世界80%以上的数据量。咱们都喜欢说“数据是新时代的石油”,但很少人说:非结构化数据,就是粘稠未提炼的原油——处理它,才是最累的活。这篇文章,我不想跟你讲那些“炫技”的论文和模型,而是从一个一线AI工程师的
- SD-WAN优化云应用与多云架构访问的关键策略
1.SD-WAN如何优化企业对公有云和SaaS应用的访问?1.1智能流量优化SD-WAN通过应用识别技术,可以根据不同的业务应用流量需求,动态分配网络资源。例如,SD-WAN能够优先为钉钉、企业微信、金山文档等关键SaaS应用分配低延迟、高带宽的链路,确保这些应用的高效运行。动态路径选择:SD-WAN可实时监测网络性能(如延迟、抖动、丢包率),并基于网络状态动态选择访问云服务(如阿里云、腾讯云、华
- Python实例题:基于 KNN 算法的手写数字识别
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于KNN算法的手写数字识别要求:实现一个基于K-NearestNeighbors(KNN)算法的手写数字识别系统。支持以下功能:使用MNIST数据集训练和测试模型实现KNN分类算法可视化手写数字样本评估模型性能(准确率、混淆矩阵等)添加用户交互界面,允许用户绘制数字并进行识别。解题思路:使用sklearn加载MNIST数据
- 什么是Sentinel? 以及优点
肘击鸣的百k路
sentinel
Sentinel是阿里巴巴开源的轻量级流量治理与系统保护组件,专注于微服务架构下的实时流量控制、熔断降级和系统稳定性保障。其核心目标是通过动态规则管理防止服务因高并发、突发流量或依赖故障导致雪崩崩溃。⚙️Sentinel的核心功能流量控制基于QPS(每秒请求数)或并发线程数限制资源访问,支持直接拒绝、匀速排队(漏桶算法)、慢启动(令牌桶算法)等策略。细粒度控制:可针对特定接口、方法甚至热点参数(如
- Python助力自动驾驶:深度学习模型优化全攻略
Echo_Wish
Python!实战!python自动驾驶深度学习
Python助力自动驾驶:深度学习模型优化全攻略说起自动驾驶,大家第一反应往往是“高精地图”“传感器融合”“路径规划”等等,背后真正的“大脑”其实是各式各样的深度学习模型。它们负责感知环境、识别路况、预测行为,甚至实时做出决策。可是,跑在车上的这些模型不仅要精准,还得轻量、实时、稳定,这可不是简单的“丢GPU就能解决”的问题。今天,咱们就从Python开发者的视角,聊聊自动驾驶里深度学习模型的优化
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache