MMDetection系列之 ONNX TO TENSORRT

如何转换模型从ONNX到TensorRT

usage

python tools/deployment/onnx2tensorrt.py \
    ${CONFIG} \
    ${MODEL} \
    --trt-file ${TRT_FILE} \
    --input-img ${INPUT_IMAGE_PATH} \
    --shape ${INPUT_IMAGE_SHAPE} \
    --min-shape ${MIN_IMAGE_SHAPE} \
    --max-shape ${MAX_IMAGE_SHAPE} \
    --workspace-size {WORKSPACE_SIZE} \
    --show \
    --verify \

Description of all arguments:

config : The path of a model config file.

model : The path of an ONNX model file.

–trt-file: The Path of output TensorRT engine file. If not specified, it will be set to tmp.trt.

–input-img : The path of an input image for tracing and conversion. By default, it will be set to demo/demo.jpg.

–shape: The height and width of model input. If not specified, it will be set to 400 600.

–min-shape: The minimum height and width of model input. If not specified, it will be set to the same as --shape.

–max-shape: The maximum height and width of model input. If not specified, it will be set to the same as --shape.

–workspace-size : The required GPU workspace size in GiB to build TensorRT engine. If not specified, it will be set to 1 GiB.

–show: Determines whether to show the outputs of the model. If not specified, it will be set to False.

–verify: Determines whether to verify the correctness of models between ONNXRuntime and TensorRT. If not specified, it will be set to False.

–verbose: Determines whether to print logging messages. It’s useful for debugging. If not specified, it will be set to False.

Example

python tools/deployment/onnx2tensorrt.py \
    configs/retinanet/retinanet_r50_fpn_1x_coco.py \
    checkpoints/retinanet_r50_fpn_1x_coco.onnx \
    --trt-file checkpoints/retinanet_r50_fpn_1x_coco.trt \
    --input-img demo/demo.jpg \
    --shape 400 600 \
    --show \
    --verify \

如何评价导出的模型

我们准备了一个工具tools/ deploy /test.py来评估TensorRT模型。

可转换为TensorRT的支持模型列表

Model	Config	Dynamic Shape	Batch Inference	Note
SSD	configs/ssd/ssd300_coco.py	Y	Y	
FSAF	configs/fsaf/fsaf_r50_fpn_1x_coco.py	Y	Y	
FCOS	configs/fcos/fcos_r50_caffe_fpn_4x4_1x_coco.py	Y	Y	
YOLOv3	configs/yolo/yolov3_d53_mstrain-608_273e_coco.py	Y	Y	
RetinaNet	configs/retinanet/retinanet_r50_fpn_1x_coco.py	Y	Y	
Faster R-CNN	configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py	Y	Y	
Cascade R-CNN	configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py	Y	Y	
Mask R-CNN	configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py	Y	Y	
Cascade Mask R-CNN	configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py	Y	Y	
PointRend	configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py	Y	Y	

你可能感兴趣的:(MMdetection,深度学习,深度学习,计算机视觉,目标检测)