- python读取海康RGBD感知相机并解析图像数据
我认为可以!
python开发语言相机
python读取海康RGBD感知相机情景:相机:MV-EB435i海康提供的C++SDK比较完善,但是python的比较粗糙,给的demo只能得到他自己定义的数据帧需求:基于海康提供的pythonSDK,进一步开发读取RGB和Depth图,并转换成后续任务需要的numpy数组形式相机分析:可以使用HiViewer先调试相机,确认相机读取RGBD没问题:下载地址这些参数可以跟着相机的指南挑一挑,调到
- 如何使用 Python 实现生成对抗网络
NoABug
python生成对抗网络tensorflow
如何使用Python实现生成对抗网络生成对抗网络(GenerativeAdversarialNetwork,GAN)是一种能够生成高质量、逼真图像的深度学习模型。GAN模型由两个神经网络组成:一个生成器和一个判别器。生成器的任务是以噪声为输入,生成看似真实的图像;而判别器则需要根据输入的图像,判断该图像是真实的还是由生成器生成的。下面我们将通过Python代码来实现一个简单的GAN模型。首先,我们
- GAN模型的Python应用——生成对抗网络
代码编织匠人
python生成对抗网络开发语言
GAN模型的Python应用——生成对抗网络生成对抗网络(GenerativeAdversarialNetwork,GAN)是深度学习中的一种重要模型,已经被广泛应用于图像、文本生成等领域。GAN模型由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器用于生成假样本,判别器用于评估真实性。两个神经网络相互博弈,通过一次次迭代训练,最终生成器可以生成足以骗过
- YOLOv8 改进:添加 GAM 注意力机制
鱼弦
人工智能时代YOLO
YOLOv8改进:添加GAM注意力机制引言在目标检测领域,YOLO(YouOnlyLookOnce)网络因其速度和准确性被广泛应用。然而,随着场景的复杂化,仅仅依靠卷积特征可能不足以捕捉图像中的重要信息。引入注意力机制,如GAM(GlobalAttentionMechanism),可以有效提高模型对关键区域的关注,从而提升检测性能。技术背景GAM是一种全局注意力机制,通过全局信息聚合和自适应权重分
- AIGC从入门到实战:可能消失的职业和新出现的机会
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIGC从入门到实战:可能消失的职业和新出现的机会作者:禅与计算机程序设计艺术1.背景介绍人工智能生成内容(AIGC)正在迅速改变我们的世界。从文本、代码到图像和音乐,AIGC正在各个领域展示其强大的能力,并开始挑战传统的创意产业。本篇文章将深入探讨AIGC的概念、技术原理、应用场景以及其对未来职业的影响,并为读者提供入门AIGC的实用指南。1.1AIGC的兴起AIGC的兴起得益于近年来人工智能技
- ST-Align:一个包含430万训练样本,涵盖了15种细粒度多模态数据集
数据集
2025-01-15,由北航大学、合肥工业大学、中科院信息工程研究所和美团等机构联合创建介绍了一种名为LLaVA-ST的多模态大型语言模型。该模型配备了一个名为ST-Align的数据集,专为细粒度时空多模态理解设计。一、研究背景近年来,多模态大型语言模型(MLLMs)在多模态理解方面取得了显著进展,能够基于图像或视频生成对话或描述。然而,对于需要基于语言输入处理视觉坐标的细粒度多模态理解任务,现有
- 【CSS】background-position属性详解
Peter-Lu
#CSScss前端node.jshtmljavascript
文章目录一、background-position属性概述1.属性介绍2.属性的取值3.属性的默认值二、background-position的基本用法1.使用关键字2.使用百分比3.使用像素值4.混合使用关键字与百分比/像素值三、background-position属性详解1.关键字定位2.百分比定位3.长度值定位四、background-position的实际应用场景1.背景图像居中显示2.
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?
努力毕业的小土博^_^
AI算法题库人工智能计算机视觉算法深度学习神经网络目标检测
【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?前言多尺度训练核心思想:优点与注意点:多尺度测试核心思想:优点与注意点:综合作用参考示例总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上
- 开源模型应用落地-Qwen2-VL-7B-Instruct-vLLM-OpenAI API Client调用
开源技术探险家
开源大语言模型-新手试炼深度学习AI编程AIGC
一、前言学习Qwen2-VL,为我们打开了一扇通往先进人工智能技术的大门。让我们能够深入了解当今最前沿的视觉语言模型的工作原理和强大能力。这不仅拓宽了我们的知识视野,更让我们站在科技发展的潮头,紧跟时代的步伐。Qwen2-VL具有卓越的图像和视频理解能力,以及多语言支持等特性。学习它可以提升我们处理复杂视觉信息的能力,无论是在学术研究中分析图像数据、解读视频内容,还是在实际工作中进行文档处理、解决
- python网格插值站点_在python中,在二维零网格上两点之间插值一条值线
weixin_39965490
python网格插值站点
TLDR:在2dnumpy数组中找到2个点后,如何在0数组中在它们之间插值一条1行?在上下文:目前我正在尝试从二值化的医学图像数据(0和1)对一个3d数组执行2d操作。最终目标是在填充体素/像素(即第一个和最后一个实例)的起点和终点之间添加一条1s的线。在为此,我使用SimpleITK分割一行,然后将其转换为numpy数组。在其他示例之后,我编写了返回一组数组的函数,这些数组显示填充(1)个像素和
- AI 大模型应用数据中心建设:高性能计算与存储架构
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、高性能计算、存储架构、分布式训练、GPU加速、数据管理1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习模型的突破性进展,催生了一系列基于大规模数据训练的强大AI模型,例如GPT-3、BERT、DALL-E等。这些AI大模型在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力,但也对计算资源和数据存储提出了极高的要求。传统的计算架构难以满足AI大
- 【前端】如何依靠纯前端实现拍照获取/选择文件等文字识别OCR技术
爱上大树的小猪
前端ocr前端框架react.js
本文仅介绍第三方依赖包Tesseract.js,Tesseract.js是一个基于网页的OCR(光学字符识别)引擎,可以识别图像中的文本并将其转换为可供计算机处理的文本数据。支持多框架编译,如Vue、React等,这里展示步骤为React开发。下面直接进入主题:附Tesseract.js官方(https://github.com/naptha/tesseract.js)下载安装依赖包npminst
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- AI大模型学习路线:从入门到精通的完整指南【2025最新】
AI大模型-大飞
人工智能学习大模型LLMAI程序员大模型学习
引言近年来,以GPT、BERT、LLaMA等为代表的AI大模型彻底改变了人工智能领域的技术格局。它们不仅在自然语言处理(NLP)任务中表现卓越,还在计算机视觉、多模态交互等领域展现出巨大潜力。本文旨在为开发者、研究者和技术爱好者提供一条清晰的学习路径,帮助读者逐步掌握大模型的核心技术并实现实际应用。一、基础阶段:构建知识体系数学与理论基础线性代数:矩阵运算、特征值与奇异值分解是大模型参数优化的基础
- 基于GPT架构的视频生成工具(VideoGPT)
deepdata_cn
视频生成音视频视频生成
VideoGPT是基于GPT架构的视频生成工具,支持从文本生成视频。最初,研究人员尝试将自然语言处理中的GPT架构思想引入视频处理领域,开始探索如何利用其强大的语言理解和生成能力来处理视频的时空信息。模型改进与创新:如VideoGPT+模型结合了先进的图像编码器和视频编码器,克服了传统方法在处理视频时的局限,在捕捉丰富空间细节和理解复杂时间动态上展现出卓越性能。iVideoGPT采用新颖的压缩to
- Google Gemini 大模型技术架构剖析
musicml
人工智能
▼最近直播超级多,预约保你有收获近期直播:《从原理到实践教你做出一个Gemini/ChatGPT》—1—Gemini技术架构剖析Google新的多模态模型家族Gemini,它在文本、图像、音频、视频等方面具有卓越的能力。Gemini系列包括Ultra、Pro和Nano三种尺寸,适用于从复杂的推理任务到设备内存受限的应用场景。GeminiUltra是最强大的模型,可在各种高度复杂的任务(包括推理和多
- 数据读取错误:RuntimeError: The size of tensor a (3) must match the size of tensor b (4) at non-singleton
hitsz_syl
单例模式计算机视觉opencv
去除4通道图像:importcv2importosimportshutilfolder_path=R'F:\bounding_box_test\bounding_box_train'#更改为存储图片文件夹的路径image_files=os.listdir(folder_path)count=0forfile_nameinimage_files:iffile_name.endswith('.jpg'
- python 使用microsoft-Florence-2-base进行图片描述生成
哦里 哦里哦里给
AI大语言模型实战pythonmicrosoft开发语言
目录一、Florence-2简介二、代码实践三、多语言模型一、Florence-2简介Florence-2是一个先进的视觉基础模型,采用基于提示(prompt)的方式,处理广泛的视觉和视觉-语言任务。Florence-2能够解析简单的文本提示,执行如图像描述、物体检测和分割等任务。该模型利用FLD-5B数据集,该数据集包含54亿个注释,涵盖1.26亿张图像,用于掌握多任务学习。模型的序列到序列架构
- Python第二十三课:自监督学习 | 无标注数据的觉醒
程之编
Python全栈通关秘籍python开发语言人工智能机器学习
本节目标理解自监督学习的核心范式与优势掌握对比学习(ContrastiveLearning)框架实现图像掩码自编码器(MaskedAutoencoder)开发实战项目:亿级参数模型轻量化探索数据增强的创造性艺术一、自监督学习基础(AI的拼图游戏)1.核心思想解析学习范式数据需求生活比喻监督学习海量标注数据老师逐题批改作业无监督学习纯无标签数据自学杂乱笔记自监督学习自动生成伪标签玩拼图游戏(根据碎片
- MobileNet家族:从v1到v4的架构演进与发展历程
彩旗工作室
人工智能架构人工智能机器学习cnn卷积神经网络
MobileNet是一个专为移动设备和嵌入式系统设计的轻量化卷积神经网络(CNN)家族,旨在在资源受限的环境中实现高效的图像分类、对象检测和语义分割等任务。自2017年首次推出以来,MobileNet经历了从v1到v4的多次迭代,每一代都在计算效率、模型大小和准确性上取得了显著进步。本文将详细探讨MobileNetv1、v2、v3和v4的原理、架构设计及其发展历程,并分析其关键创新和性能表现。Mo
- Vision Transformer (ViT) 详细描述及 PyTorch 代码全解析
AIGC_ZY
CVtransformerpytorch深度学习
VisionTransformer(ViT)是一种将Transformer架构应用于图像分类任务的模型。它摒弃了传统卷积神经网络(CNN)的卷积操作,而是将图像分割成patches,并将这些patches视为序列输入到Transformer编码器中。ViT的处理流程输入图像被分割成多个固定大小的patch,每个patch经过线性投影变成嵌入向量,然后加上位置编码。接着,这些嵌入向量会和类别标签(c
- 【图像分割】Labelme JSON标注转换为TXT代码详解
唐king
jsonpython
书接上文:https://blog.csdn.net/qq_49092686/article/details/145114987?spm=1001.2014.3001.5502这里给出更细致的json2txt代码,同时考虑了circle、rectangle这两种情况各位朋友,在使用前,你一定要注意你的json格式是不是跟我的一致,不一致的话是用不了的(是不是也用的labelme制作的数据集)imp
- 工业相机视频播放(RTSP)
CHHC1880
工业相机rtspffmpeg推流
需求:工业相机图像能在rtsp流上播放。实现手段:C#利用工业相机的SDK拿到图后,通过ffmpeg管道推给流媒体程序,再转流播放。模拟测试:两张图在rtsp上进行轮播
- 分辨率、帧率和码率三者之间的关系
0 error ~ 0 warning
计算机杂说学习
1、前言 在很多视频项目中,我们经常会说的,视频质量好或者视频质量不好。那么这个视频质量到底怎么算是好,怎么算是不好呢?这里我们就要了解一下有关视频的几个重要参数:分辨率,帧率,码率。这三个参数是评估视频质量的关键参数。2、分辨率 指图像占用屏幕上像素的多少。图像中的像素密度越高,图像的分辨率越高。目前视频方面使用最多的分辨率是1080P。1080P的像素总数为1920x1080=2,073,
- CIFAR-10 数据集的简介
一头大学牲
python深度学习机器学习数据分析
文章目录CIFAR-10数据集的简介文件结构图像数据结构访问数据Python代码CIFAR-10数据集的数据格式CIFAR-10数据集的简介CIFAR-10数据集是一个广泛使用的图像数据集,具体可见CIFAR-10和CIFAR-100数据集,它包含60,000张32x32像素的彩色(3channels)图像,分为10个类别,每个类别有6,000张图像。每个类别的图像数量分布如下:飞机(airpla
- PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码
max500600
算法pythonYOLO深度学习人工智能
以下是一个使用PyTorch实现ConditionalDCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码。该代码包含训练和可视化部分,假设输入为图片和4个工艺参数,根据这些输入生成相应的图片。1.导入必要的库importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvisionimporttorchvision.
- YOLOv5+UI界面在车辆检测中的应用与实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪人工智能
1.引言随着智能交通系统(ITS)的快速发展,车辆检测已成为计算机视觉领域的重要研究方向。车辆检测技术广泛应用于交通流量监控、车辆违章抓拍、无人驾驶等场景中。近年来,深度学习技术的突破,特别是卷积神经网络(CNN)的崛起,使得目标检测技术取得了显著进展。其中,YOLO(YouOnlyLookOnce)系列模型以其高效的实时检测能力和出色的性能成为车辆检测领域的首选方法之一。在本文中,我们将基于YO
- 一周热点:微软攻克语音输入、文本输出难题-Phi-4-multimodal
数据分析能量站
机器学习人工智能
微软Phi-4-multimodal模型是人工智能领域的一个重要进展,它标志着微软在多模态人工智能技术上的突破。以下是对该模型的详细解释:模型概述微软Phi-4-multimodal是一个能够同时处理文本、图像和语音的多模态大型语言模型。它通过创新的架构和训练方法,实现了在不同模态之间的无缝交互,为用户提供更自然、更智能的交互体验。模型架构该模型采用多模态Transformer架构,通过LoRA(
- Adobe Photoshop CC 2025配置要求
小魚資源大雜燴
windows
操作系统Windows:Windows10(版本22H2)或Windows11(版本21H2、22H2、23H2)。macOS:macOSMonterey(12.0)或更高版本。处理器:支持AVX2和SSE4.2的多核Intel、AMD或WinARM处理器。推荐使用最新一代的IntelCore或AMDRyzen处理器。内存最低要求:8GBRAM。推荐配置:16GB或更高,特别是对于处理高分辨率图像
- Adobe Firefly 技术浅析(三):GANs 的改进
爱研究的小牛
AIGC——图像AIGC—生成对抗网络AIGC机器学习深度学习
生成式对抗网络(GANs)在图像生成领域取得了显著的进展,但原始的GANs在训练稳定性、生成质量以及多样性方面存在一些挑战。AdobeFirefly在其图像生成技术中采用了多种改进的GANs方法,以提高生成图像的质量和多样性。1.条件生成式对抗网络(cGANs)1.1基本原理条件生成式对抗网络(cGANs)通过引入额外的条件信息(如类别标签、文本描述等),使得生成器能够根据这些条件生成特定类型的图
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_