python train.py
nohup python train.py &
1807028
代表的是现在这个程序的唯一标识,因为我们采用 nohup
命令就相当于把这个程序放到后台执行了,所以即使现在网络断掉还是会保持执行,因此我们不能再用常规的 ctrl + c
来结束程序,我们要根据这个 pid
来结束程序nohup: ignoring input and appending output to inohup.out
这句话表示所有的信息将会重定向到 nohup.out
这个文件中nohup.out
这个文件中并不会将你在 train.py
中 print
的那些信息也进行保存。那如果我想获得这些信息怎么办呢?答案是采用一个 log
文件来保存运行过程中的所有信息。nohup python train.py > train.log 2>&1 &
pid
train.log
中2>&1解释:
将标准错误2 重定向到标准输出 &1,标准输出 &1再被重定向输入到 train.log 文件中。
- 0 - stdin (standard input, 标准输入)
- 1 - stdout (standard output, 标准输出)
- 2 - stderr (standard error,标准错误输出)
train.log
中了args:
Namespace(batch_size=8, bpe_token=False, cls_index_path='data/cls_index.json', device='0,1,2,3', encoder_json='tokenizations/encoder.json', epochs=8, fp16=False, fp16_opt_level='O1', gradient_accumulation=1, log_step=10, lr=0.00015, max_grad_norm=1.0, min_length=128, model_config='config/model_config_small.json', num_pieces=3, output_dir='model/', pretrained_model='pretrained/GPT2-base-Chinese', raw=False, raw_data_path='data/jieshuo.txt', samples_path='data/samples.json', segment=False, stride=768, tokenized_data_path='data/jieshuo_tokens_full.txt', tokenizer_path='pretrained/GPT2-base-Chinese/vocab.txt', vocab_bpe='tokenizations/vocab.bpe', warmup_steps=2000, writer_dir='tensorboard_summary/')
config:
{
"attn_pdrop": 0.1,
"embd_pdrop": 0.1,
"finetuning_task": null,
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-05,
"n_ctx": 1024,
"n_embd": 768,
"n_head": 12,
"n_layer": 10,
"n_positions": 1024,
"num_labels": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_past": true,
"pruned_heads": {},
"resid_pdrop": 0.1,
"summary_activation": null,
"summary_first_dropout": 0.1,
"summary_proj_to_labels": true,
"summary_type": "cls_index",
"summary_use_proj": true,
"torchscript": false,
"use_bfloat16": false,
"vocab_size": 13317
}
using device: cuda
number of parameters: 102068736
calculating total steps
total steps = 80319
Let's use 4 GPUs!
starting training
loading samples
epoch 1
time: 2022-12-09 16:12:14.115555
shuffling samples ...
converting samples
checking samples ....
0%| | 0/9968 [00:00<?, ?it/s]/home/qinpn/anaconda3/envs/gpt/lib/python3.6/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
warnings.warn('Was asked to gather along dimension 0, but all '
/home/qinpn/anaconda3/envs/gpt/lib/python3.6/site-packages/transformers/optimization.py:166: UserWarning: This overload of add_ is deprecated:
add_(Number alpha, Tensor other)
Consider using one of the following signatures instead:
add_(Tensor other, *, Number alpha) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1050.)
exp_avg.mul_(beta1).add_(1.0 - beta1, grad)
0%| | 1/9968 [00:22<61:32:05, 22.23s/it]
0%| | 2/9968 [00:22<26:33:54, 9.60s/it]
0%| | 3/9968 [00:23<15:21:24, 5.55s/it]
0%| | 4/9968 [00:35<21:48:04, 7.88s/it]
0%| | 5/9968 [00:35<14:37:39, 5.29s/it]
0%| | 6/9968 [00:36<10:18:57, 3.73s/it]
0%| | 7/9968 [00:37<7:37:16, 2.75s/it]
0%| | 8/9968 [00:38<5:48:42, 2.10s/it]
0%| | 9/9968 [00:38<4:39:49, 1.69s/it]
0%| | 10/9968 [00:39<3:53:26, 1.41s/it]
0%| | 11/9968 [00:40<3:2
kill -9 进程号PID
Linux nohup 命令
【Linux】服务器后台运行程序
如何实现SSH断开后 进程仍然在后台运行
disown命令 – 从当前的shell中移除作业
Linux 让进程在后台运行的几种方法