- LeetCode第300题_最长递增子序列
@蓝莓果粒茶
算法leetcode算法职场和发展学习c#游戏python
LeetCode第300题:最长递增子序列文章摘要本文详细解析LeetCode第300题"最长递增子序列",这是一道考察动态规划和二分查找的中等难度题目。文章提供了动态规划和贪心+二分查找两种实现方案,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合学习动态规划和二分查找的读者。核心知识点:动态规划、二分查找、贪心算法难度等级:中等推荐人群:具备基础算法知识,想要提升
- LeetCode第301题_删除无效括号
@蓝莓果粒茶
算法leetcode算法职场和发展c#学习pythonc++
LeetCode第301题:删除无效括号文章摘要本文详细解析LeetCode第301题"删除无效括号",这是一道考察DFS和括号匹配的困难难度题目。文章提供了DFS和BFS两种实现方案,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合学习深度优先搜索和字符串处理的读者。核心知识点:DFS、BFS、括号匹配、字符串处理难度等级:困难推荐人群:具备基础算法知识,想要提升搜
- Python binary search二分查找算法详解及源码
猿来如此yyy
Python算法详解及源码算法python排序算法开发语言数据库人工智能数据结构
二分查找算法是一种在有序数组中查找特定元素的常用算法。它的基本思想是将要查找的元素与数组的中间元素进行比较,如果相等,则返回该元素的索引;如果要查找的元素比中间元素小,则在数组的左半部分继续查找;如果要查找的元素比中间元素大,则在数组的右半部分继续查找。通过不断缩小查找范围,最终可以找到要查找的元素或确定该元素不存在于数组中。二分查找算法的优点是时间复杂度为O(logn),效率较高。这是因为每一次
- 华为OD 机试 2025 B卷 - 最大报酬 (C++&Python&JAVA&JS&GO)
无限码力
华为OD机试真题刷题笔记华为od算法华为OD2025B卷华为OD机试2025B卷华为OD机考2025B卷
最大报酬2025B卷目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解2025B卷100分题型题目描述小明每周上班都会拿到自己的工作清单,工作清单内包含n项工作,每项工作都有对应的耗时时间(单位h)和报酬,工作的总报酬为所有已完成工作的报酬之和,那么请你帮小明安排一下工作,保证小明在指定的工作时间内工作收入最大化。输入描述T代表工作时长(单位h,00),w代表该项工作的报酬
- 华为OD机试2025B卷 - 比赛 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD2025B卷华为OD机考2025B卷华为OD机试华为OD机试2025B卷
比赛2025B卷目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解华为OD2025B卷100分题型题目描述一个有N个选手参加比赛,选手编号为1~N(3<=N<=100),有M(3<=M<=10)个评委对选手进行打分。打分规则为每个评委对选手打分,最高分10分,最低分1分。请计算得分最多的3位选手的编号。如果得分相同,则得分高分值最多的选手排名靠前(10分数量相同,则比较9分
- 基于OpenCv的运动物体检测算法
Liu_LongPo
计算机视觉OpenCv运动物体检测
基于一个实现的基于OpenCv的运动物体检测算法,可以用于检测行人或者其他运动物体。#include#include#include#includeintmain(intargc,char**argv){//声明IplImage指针IplImage*pFrame=NULL;IplImage*pFrImg=NULL;IplImage*pBkImg=NULL;CvMat*pFrameMat=NULL;
- 免费小学口算出题器:自动生成语数英题目 支持打印导出
小龙软件库
开源软件电脑windows
各位家有小学生的宝爸宝妈们,还有辛勤的老师们,快来听我说!你们有没有过这样的经历,想给孩子找点合适的练习题,结果翻遍资料也找不到,累得头晕眼花?别急,小学生出题软件这一神器闪亮登场啦!软件下载地址这软件就是专门给小学阶段孩子量身打造的智能教育小帮手。它能帮家长和老师轻松地弄出符合孩子学习进度的练习题。软件有个预设算法,能自动生成数学、语文、英语这些科目的题目。数学题那是应有尽有,加减乘除、分数运算
- 关联规则算法学习—Apriori
Did然
数据挖掘算法学习python数据挖掘
关联规则算法学习—Apriori一、实验项目:关联规则算法学习项目性质:设计型二、实验目的:理解并掌握关联规则经典算法Apriori算法,理解算法的原理,能够实现算法,并对给定的数据集进行关联规则挖掘三、实验内容:1、实现Apriori算法,验证算法的正确性,并将算法应用于给定的数据集Groceries,根据设定的支持度和置信度,挖掘出符合条件的频繁项集及关联规则。2、挑选几个有代表性的频繁项集和
- 关联规则挖掘--Apriori算法
别团等shy哥发育
数据挖掘与机器学习算法数据挖掘机器学习Apriori
关联规则挖掘--Apriori算法1、关联规则概述2、置信度、支持度、提升度的概念3、关联规则挖掘问题4、Apriori算法4.1算法步骤4.2先验原理4.3寻找最大频繁项的过程4.4注意问题:项的连接5、代码实战1、关联规则概述 关联规则(AssociationRules)反映一个事物与其他事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么,其中一个事物就能够通过其
- 机器学习-- 聚类
SunsPlanter
机器学习机器学习聚类人工智能
什么是聚类?Clustering可以简单地说,对有标注的数据分类,就是逻辑回归(属于有监督分类),对无标注的数据分类,就是聚类(属于无监督分类)聚类是一种无监督学习技术,其目标是根据样本之间的相似性将未标记的数据分组。比如,在一个假设的患者研究中,研究人员正在评估一项新的治疗方案。在试验期间,患者每周会报告自身症状的频率以及严重程度。研究人员可以使用聚类分析将对治疗反应相似的患者归为同一类。图1展
- 数据挖掘 关联规则挖掘 Apriori算法 C++实现
王者灵梦
数据挖掘c++机器学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Apriori是什么,大致步骤?二、全部代码全部代码总结前言本文只是基于课程作业的相关理解,请谨慎参考,如有不妥,欢迎各位批评指正。一、Apriori是什么,大致步骤?示例:Apriori算法是一种最有影响的布尔关联规则频繁项集的算法,Apriori使用一乘坐逐层扫描的迭代方法,“K-1”项集用于搜索“K”项集。大致步
- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- educoder机器学习 --- 神经网络
木右加木
educoder机器学习神经网络
第1关:神经网络基本概念1、C第2关:激活函数#encoding=utf8defrelu(x):'''x:负无穷到正无穷的实数'''#*********Begin*********#ifx<=0:return0else:returnx#*********End*********#第3关:反向传播算法#encoding=utf8importosimportpandasaspdfromsklearn.
- 回归预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)多输入单输出
matlab科研社
神经网络回归matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍长短期记忆神经网络(LSTM)作为一种循环神经网络(RNN)的变体,擅长处理序列数据并捕捉长期依赖关系,而支持向量机(SVR)则是一种强大的回归算法,能够有效地处理高维数据并防止过拟合。将两者结合的LSTM
- SSVEP Next:现代化的 SSVEP 可视化 Web 快速实现
框架主义者
web脑机接口
SSVEPNext:现代化的SSVEP可视化Web快速实现在线使用|GithubSSVEP-Next是一个基于React、TypeScript和Vite构建的单页面应用(SPA),用于快速设计和运行稳态视觉诱发电位(SSVEP)实验的视觉刺激界面。该项目继承自quick-ssvep的核心科学算法,并在架构和交互体验上进行了全面升级。主要特性包括:拖拽式可视化设计:用户可通过拖拽和属性面板,直观地在
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- C++贪心算法
kobe_zlx
c++贪心算法开发语言
目录一,定义二,特点三,使用四,步骤:1.将问题分解为若干个问题2.找出适合该题目的贪心策略3.求解每个子问题的最优解4.组合局部最优解五,例题:1,最优装载题目分析(个人想法):详见代码:2,删数问题题目分析:ACcode一,定义贪心算法(greedyalgorithm)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,得到的是在某种意义上的局部最优解二,特
- C++算法——贪心算法的讲解与实践
不東工作室
算法c++贪心算法
目录引言贪心算法概述贪心算法的适用条件贪心算法的实现步骤C++实现贪心算法问题:硬币找零问题C++代码实现总结参考文献引言在算法的世界中,贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。这种算法简单易懂,且在某些问题上能够快速得到近似最优解。本文将通过C++语言对贪心算法进行讲解,并结合实际例子来展示其应用。贪心算法概述贪心算法在解决问题
- 【机器学习&深度学习】适合微调的模型选型指南
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、不同规模模型微调适用性二、微调技术类型对显存的影响三、选择建议(根据你的硬件)四、实际模型推荐五、不同模型适合人群六、推荐几个“非常适合微调”的模型七、推荐使用的微调技术八、场景选择示例场景1:智能客服(中文)场景2:法律问答(中文RAG)场景3:医学问答/健康咨询场景4:AI写作助手(中英文)场景5:代码补全/AI编程助手对比总结表九、不同参数模型特点9.1参数规模vs能力9.2微型模型
- Java 里 Hibernate 的多租户架构实现
AI大模型应用实战
javahibernate架构ai
Java里Hibernate的多租户架构实现关键词:Java、Hibernate、多租户架构、多租户实现、数据隔离摘要:本文深入探讨了在Java中利用Hibernate实现多租户架构的相关技术。首先介绍了多租户架构的背景和意义,包括目的、预期读者、文档结构以及相关术语。接着阐述了Hibernate多租户的核心概念,给出了原理和架构的文本示意图与Mermaid流程图。详细讲解了核心算法原理,通过Py
- 【机器学习&深度学习】本地部署 vs API调用:关键看显存!
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、本地部署VSAPI调用1.模型运行方式2.性能与速度3.成本4.隐私与安全5.何时选择哪种方式?二、为什么推荐本地部署?1️⃣零依赖网络和外部服务,更可靠稳定2️⃣无调用次数限制,更适合高频或批量推理3️⃣避免长期API费用,节省成本4️⃣保护用户隐私和数据安全5️⃣可自定义、深度优化6️⃣加载一次即可复用,低延迟高性能7️⃣离线可用(重要!)三、适合本地部署的情况四、本地部署条件4.1模
- 深度学习 vs 传统机器学习:哪个更适合你的项目?
AI大模型应用之禅
深度学习机器学习人工智能ai
深度学习vs传统机器学习:哪个更适合你的项目?关键词:深度学习、传统机器学习、特征工程、数据量、计算资源、项目选择、算法对比摘要:本文将用"炒菜"和"拼图"等生活案例,从核心原理、适用场景、资源需求等维度对比深度学习与传统机器学习。通过具体代码示例和真实项目场景分析,帮助开发者和企业决策者快速判断:你的项目该选深度学习还是传统机器学习?背景介绍目的和范围随着AI技术普及,"该用深度学习还是传统机器
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- colour-demosaicing:实现多款CFA去马赛克算法的Python开源包
常琚蕙
colour-demosaicing:实现多款CFA去马赛克算法的Python开源包colour-demosaicingCFA(ColourFilterArray)DemosaicingAlgorithmsforPython项目地址:https://gitcode.com/gh_mirrors/co/colour-demosaicing项目介绍在数字图像处理领域,马赛克效应(Mosaicing)是
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- Milvus向量数据库入门指南
longfei.li
milvus数据库人工智能
一、Milvus简介Milvus是一个开源的向量数据库,专为AI应用和向量相似度搜索而设计,以加速非结构化数据的检索。自2019年创建以来,Milvus专注于存储、索引和管理由深度神经网络和其他机器学习模型生成的海量嵌入向量。其能够处理万亿级别的向量索引任务。Milvus的核心优势在于其高效的索引机制,它支持多种索引类型,包括FLAT、IVF_FLAT、IVF_SQ8、IVF_PQ和HNSW等。这
- Golang领域GOROOT的配置与使用技巧
Golang编程笔记
golang爬虫开发语言ai
Golang领域GOROOT的配置与使用技巧关键词:Golang,GOROOT,配置,使用技巧,环境变量摘要:本文详细介绍了Golang领域中GOROOT的相关知识。首先阐述了GOROOT的背景,包括其目的、适用读者、文档结构和相关术语。接着深入解析了GOROOT的核心概念及与其他关键元素的联系,并通过Mermaid流程图展示其架构。之后详细讲解了GOROOT配置的核心算法原理及具体操作步骤,配以
- 常见机器学习算法与应用场景
计算机软件程序设计
知识科普机器学习算法人工智能
当然可以。下面是对常见机器学习算法的全面详细阐述,包括每种算法的基本原理、特点以及典型应用场景。1.监督学习(SupervisedLearning)1.1线性回归(LinearRegression)原理:通过拟合一条直线来表示输入和输出之间的关系,适用于预测连续值输出。特点:简单易懂,计算速度快,但只能捕捉线性关系。应用场景:房价预测股票价格预测销售额预测1.2逻辑回归(LogisticRegre
- LeetCode 70:爬楼梯|递归到动态规划全路径解析
kiki_2411
算法设计与分析leetcode动态规划算法
本篇博客将通过LeetCode第70题“ClimbingStairs”为例,系统讲解从递归暴力解法到记忆化搜索、再到动态规划及空间优化的四种典型思路,适合算法初学者深入掌握递归与DP基础。文章目录LeetCode70|爬楼梯一、题目描述二、思路分析三、方法一:递归(不带记忆)思路C++代码四、方法二:递归+记忆化搜索(Top-DownDP)思路五、方法三:动态规划(Bottom-Up)思路六、方法
- 深入理解HashMap:从数据结构到高并发战场
达利源
java面试题哈希算法散列表算法
以下是我在财税业务中的自我体会:一、核心矛盾与设计哲学想象一个存放千万级纳税人信息的仓库(Map)。你需要:极速存取:输入ID,瞬间定位到对象。动态扩容:纳税人数量激增时,仓库能自动变大。空间高效:避免仓库大部分区域空置。线程安全(可选):多窗口(线程)同时办理业务不混乱。HashMap的答卷:核心武器:数组+链表/红黑树灵魂算法:哈希函数(HashFunction)扩容策略:负载因子(LoadF
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比