pytorch怎么显示unused_parameters

报错描述:

RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one. This error indicates that your module has parameters that were not used in producing loss. You can enable unused parameter detection by (1) passing the keyword argument `find_unused_parameters=True` to `torch.nn.parallel.DistributedDataParallel`; (2) making sure all `forward` function outputs participate in calculating loss. If you already have done the above two steps, then the distributed data parallel module wasn't able to locate the output tensors in the return value of your module's `forward` function. Please include the loss function and the structure of the return value of `forward` of your module when reporting this issue (e.g. list, dict, iterable).

报错原因:

网络模型中有被初始化了但未使用的参数变量

解决办法:

在bash控制台训练的脚本命令前面加一行显示具体那些参数没用到

TORCH_DISTRIBUTED_DEBUG=DETAIL bash train.sh

然后修改网络,如果是自己的模型没有预训练权值,那你该怎么修改就怎么改(没用的参数删掉或注释掉都行)

如果是预训练的模型被自定义修改之后导致某些参数未使用

则在预训练权重加载的时候加上一个参数strict=False

self.model.load_state_dict(model_dict, strict=False)

这样就能够忽略掉那些未使用的参数

你可能感兴趣的:(深度学习记录,pytorch,深度学习,人工智能,python)