计算机视觉与深度学习-卷积&图像去噪&边缘提取

1 图像去噪与卷积

计算机视觉与深度学习-卷积&图像去噪&边缘提取_第1张图片
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第2张图片

1.1 卷积定义

卷积的定义:令F为图像,H为卷积核,F与H的卷积记为R = F * H
R i j _{ij} ij = ∑ u , v \sum\limits_{u,v} u,vH i − u , j − v _{i-u,j-v} iu,jvF u , v _{u,v} u,v

1.2 卷积性质

  • 叠加性:filter(f 1 _{1} 1 + f 2 _{2} 2)=filter(f 1 _{1} 1)+filter(f 2 _{2} 2)
  • 平移不变性: filter(shift(f))=shift(filter(f))
  • 交换律:a * b = b * a
  • 结合律:a * (b * c) = (a * b) * c
  • 分配律:a * (b + c) = (a * b) + (a * c)
  • 标量:ka * b = a * kb = k(a * b)

1.3 边界填充

计算机视觉与深度学习-卷积&图像去噪&边缘提取_第3张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第4张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第5张图片

1.4 卷积示例

计算机视觉与深度学习-卷积&图像去噪&边缘提取_第6张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第7张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第8张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第9张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第10张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第11张图片

1.5 小结

  • 卷积操作后的图像要小于输入时图像,通过边界填充,我们可以实现卷积前后图像的尺寸不变;
  • 一种最常用的边界填充就是常数填充。

2 高斯卷积核

2.1 平均卷积核存在的问题

振铃:卷积后的图像产生了一些水平和垂直方向的条状
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第12张图片

2.2 平均卷积核的解决方法

:根据领域像素与中心的远近程度分配权重
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第13张图片

2.3 高斯卷积核的生成步骤

1)确定卷积核的尺寸,比如5 * 5
2)设置高斯函数的标准差,比如 σ \sigma σ = 1
G σ G_{\sigma} Gσ = 1 2 π σ 2 \frac{1}{2\pi\sigma^2} 2πσ21 e − x 2 + y 2 2 σ 2 e^{-\frac{x^2+y^2}{2\sigma^2}} e2σ2x2+y2
3)计算卷积核各个位置权重值
4)对权重值进行归一化


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第14张图片

2.4 高斯卷积核的参数设置

1)卷积核的尺寸
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第15张图片
模板尺寸越大,平滑效果越强

2)高斯函数的标准差
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第16张图片
方差越大,平滑效果越明显

2.5 高斯卷积核的参数小结

  • 大方差或者大尺寸卷积核平滑能力强
  • 小方差或者小尺寸卷积核平滑能力弱
  • 经验法则:将卷积核的半窗宽度设置为3 σ \sigma σ,最终卷积模板尺寸为2 * 3 σ \sigma σ + 1
    例:标准差设置成1,卷积模板宽度=231 + 1 = 7

2.6 高斯卷积核 vs. 平均卷积核

计算机视觉与深度学习-卷积&图像去噪&边缘提取_第17张图片

2.7 高斯卷积核

  • 去除图像中的“高频”成分(低通滤波器)
  • 两个高斯卷积核卷积后得到的还是高斯卷积核
    • 使用多次小方差卷积核连续卷积,可以得到与大方差卷积核相同的结果
    • 使用标准差为 σ \sigma σ 的高斯核进行两次卷积与使用标准差 σ 2 \sigma\sqrt{2} σ2 的高斯核进行一次卷积相同
  • 可分离
    • 可分解为两个一维高斯的乘积
      计算机视觉与深度学习-卷积&图像去噪&边缘提取_第18张图片

2.8 卷积操作运算量

1)用尺寸为m * m的卷积核卷积一个尺寸为n * nd的图像,其计算复杂度是多少?
答:O( n 2 m 2 n^2m^2 n2m2)
2)如果核可分离呢?
答:O( n 2 m n^2m n2m)

1.2.8 小结

高斯卷积核,它能够有效地抑制噪声、实现图像平滑。同时,高斯卷积核的堆叠以及分解,都可以用于减少卷积计算的复杂度。

3 图像噪声与滤波器

3.1 噪声

计算机视觉与深度学习-卷积&图像去噪&边缘提取_第19张图片

1)椒盐噪声:黑色像素和白色像素随机出现,建议使用中值滤波。
2)脉冲噪声:白色像素随机出现,建议使用中值滤波。
3)高斯噪声:噪声强度变化服从高斯分布(正态分布),建议使用高斯卷积核去噪。

3.1.1 椒盐噪声

计算机视觉与深度学习-卷积&图像去噪&边缘提取_第20张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第21张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第22张图片

3.1.2 高斯噪声

计算机视觉与深度学习-卷积&图像去噪&边缘提取_第23张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第24张图片

4 卷积与边缘提取

4.1 什么是边缘

图像中亮度明显而急剧变化的点

4.2 为什么要研究边缘

1)编码图像中的语义与形状信息
2)相对于像素表示,边缘表示显然更加紧凑

4.3 边缘的种类

计算机视觉与深度学习-卷积&图像去噪&边缘提取_第25张图片

4.4 边缘检测

图像中亮度明显而急剧变化的地方
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第26张图片

4.5 图像求导

2D函数f(x,y)的偏导为:
∂ f ( x , y ) ∂ x \frac{\partial f(x,y)}{\partial x} xf(x,y) = lim ⁡ x → ε \lim_{x\to\varepsilon} limxε f ( x + ε , y ) − f ( x , y ) ε \frac{f(x+\varepsilon,y)-f(x,y)}{\varepsilon} εf(x+ε,y)f(x,y)

图像求导公式:
∂ f ( x , y ) ∂ x \frac{\partial f(x,y)}{\partial x} xf(x,y) f ( x + 1 , y ) − f ( x , y ) 1 \frac{f(x+1,y)-f(x,y)}{1} 1f(x+1,y)f(x,y)
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第27张图片

4.6 图像梯度

1)图像梯度: ▽ f \bigtriangledown f f = [ ∂ f ∂ x \frac{\partial f}{\partial x} xf , ∂ f ∂ y \frac{\partial f}{\partial y} yf ] 梯度指向灰度变化最快的方向

在这里插入图片描述
2)梯度方向: θ \theta θ = t a n − 1 tan^{-1} tan1 ( ∂ f ∂ y / ∂ f ∂ x ) (\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}) (yf/xf)
3)梯度的模:|| ▽ f \bigtriangledown f f|| = ( ∂ f ∂ x ) 2 + ( ∂ f ∂ y ) 2 \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2} (xf)2+(yf)2

计算机视觉与深度学习-卷积&图像去噪&边缘提取_第28张图片

4.7 噪声的影响

1)噪声带来的边缘检测问题
噪声图像的某一行或列的灰度值随位置变换的情况
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第29张图片


计算机视觉与深度学习-卷积&图像去噪&边缘提取_第30张图片
边缘在什么位置?
2)解决方法:先平滑再求导
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第31张图片
3)解决方法:先求导再卷积(节省了一次图像卷积操作)
微分是卷积,而卷积具有结合性
d d x ( f ∗ g ) \frac{d}{dx}(f * g) dxd(fg) = f * d d x g \frac{d}{dx}g dxdg

计算机视觉与深度学习-卷积&图像去噪&边缘提取_第32张图片
4)高斯一阶偏导卷积核
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第33张图片

5)高斯一阶偏导卷积核的方差变化
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第34张图片
σ \sigma σ越大,提取的轮廓越粗犷
σ \sigma σ越小,提取的轮廓越细致

4.8 高斯核 vs. 高斯一阶偏导核

  • 高斯核
    • 消除高频成分(低通滤波器)
    • 卷积核中的权值不可为负数
    • 权值总和为1(恒定区域不受卷积影响)
  • 高斯一阶偏导核
    • 高斯的导数
    • 卷积核中的权值可以为负
    • 权值总和是0(恒定区域无响应)
    • 高对比度点的响应值大
      计算机视觉与深度学习-卷积&图像去噪&边缘提取_第35张图片

4.9 边缘检测目标

1)检测目标
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第36张图片
2)Canny边缘检测器
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第37张图片
① 非极大值抑制
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第38张图片
改进:
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第39张图片

if( p 点的梯度强度 > q 点的梯度强度 && p 点的梯度强度 > r 点的梯度强度):
    p 点保留
else:
    删除 p 点

② 门限过滤
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第40张图片
改进:双阈值
计算机视觉与深度学习-卷积&图像去噪&边缘提取_第41张图片
③ 总结

  • 用高斯一阶偏导核卷积图像
  • 计算每个点的梯度幅值和方向
  • 非极大值抑制
    • 将宽的“边缘”细化至单个像素宽度
  • 连接与阈值(滞后)
    • 定义两个阈值:低和高
    • 使用高阈值开始边缘曲线,使用低阈值继续边缘曲线

你可能感兴趣的:(计算机视觉与深度学习,计算机视觉,深度学习,cnn)