m基于功率谱,高阶累积量和BP神经网络-GRNN网络的调制方式识别仿真,对比2psk,4PSK,2FSK以及4FSK

目录

1.算法描述

2.仿真效果预览

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

       首先区分大类的话采用的基于功率谱提取的len参数(峰值频率间隔),用峰值个数来代替,这样能很好的区分大类把MFSK和MPSK信号区分开。

针对MPSK:

一:基于瞬时参数——Char2你采用的这个是零中心非弱信号段瞬时相位非线性分量的标准偏差,这个是用来区分2PSK和4PSK的。

二:高阶累积量——针对MPSK高阶累积量的组合在高斯噪声以及多径下能较好的区分MPSK信号。

三:谱相关系数——参考文献(1)中基于谱相关的调制识别,采用谱相关系数在的最大值C可区分2PSK和4PSK。(文献1中4.3节中4.3.2的第四个特征参数)

四:循环累积量——针对MPSK循环累积量在多径下识别率较高,主要是计算量大,复杂度高的特点,区分效果和高阶累积量相同,也是具有抗多径的效果。

五:小波——参考文献(2)针对MPSK的调制识别,码元交界处有幅度不同的跳变,跳变的幅度个数表征PSK的调制阶数,这种特征提取需要进行符号速率估计!(文献2中5.1.4节PSK中的信号阶数判别)

六:M次方谱——参考文献(3),对于BPSK信号的平方谱在2倍载频处有很强的单频分量,其他的PSK信号无此特性,QPSK信号的四次方谱在2倍载频处有单频分量,所以M次方谱的单频分量的检测可以区分信号MPSK信号。

        广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,还可以处理不稳定数据。虽然GRNN看起来没有径向基精准,但实际在分类和拟合上,特别是数据精准度比较差的时候有着很大的优势。

       GRNN是RBF的一种改进,结构相似。区别就在于多了一层求和层,而去掉了隐含层与输出层的权值连接(对高斯权值的最小二乘叠加)。

1.输入层为向量,维度为m,样本个数为n,线性函数为传输函数。

2.隐藏层与输入层全连接,层内无连接,隐藏层神经元个数与样本个数相等,也就是n,传输函数为径向基函数。

3.加和层中有两个节点,第一个节点为每个隐含层节点的输出和,第二个节点为预期的结果与每个隐含层节点的加权和。

4.输出层输出是第二个节点除以第一个节点。

2.仿真效果预览

matlab2022a仿真结果如下:

m基于功率谱,高阶累积量和BP神经网络-GRNN网络的调制方式识别仿真,对比2psk,4PSK,2FSK以及4FSK_第1张图片

 m基于功率谱,高阶累积量和BP神经网络-GRNN网络的调制方式识别仿真,对比2psk,4PSK,2FSK以及4FSK_第2张图片

 m基于功率谱,高阶累积量和BP神经网络-GRNN网络的调制方式识别仿真,对比2psk,4PSK,2FSK以及4FSK_第3张图片

3.MATLAB核心程序

clc;
clear;
close all;
warning off;
addpath 'func\'
%全局变量
parameters;
 
 
SNR0   = inf;
N0     = 50000;
 
 
y_2FSK = zeros(1,N0);
y_4FSK = zeros(1,N0);
y_2PSK = zeros(1,N0);
y_4PSK = zeros(1,N0);
 
 
%2FSK
y_2FSK = func_2FSK(N0);
%4FSK
y_4FSK = func_4FSK(N0);
%BPSK
y_2PSK = func_2PSK(N0);
%QPSK
y_4PSK = func_4PSK(N0);
 
 
%调制识别
y_2FSKn = func_add_noise(y_2FSK,SNR0); 
y_4FSKn = func_add_noise(y_4FSK,SNR0);
y_2PSKn = func_add_noise(y_2PSK,SNR0);
y_4PSKn = func_add_noise(y_4PSK,SNR0);
 
 
%首先进行FSK和PSK两种模式的区分
Ns      = 2048;
%用x进行功率谱估计 
[p1,f1] = func_power(y_2FSKn,Ns);
[p2,f2] = func_power(y_4FSKn,Ns);
[p3,f3] = func_power(y_2PSKn,Ns);
[p4,f4] = func_power(y_4PSKn,Ns);
 
 
 
len1 = func_fsk_psk_check(p1);
len2 = func_fsk_psk_check(p2);
len3 = func_fsk_psk_check(p3);
len4 = func_fsk_psk_check(p4);
 
 
 
 
%根据参数获得FSK和PSK区分参数
Level= (mean([len1,len2]) - mean([len3,len4]))/2;
 
%分别提取FSK和PSK的不同调制方式的特征参数
char1   = real(func_para_check(y_2FSKn,N0));
char2   = real(func_para_check(y_4FSKn,N0));
char3   = real(func_para_check(y_2PSKn,N0));
char4   = real(func_para_check(y_4PSKn,N0));
 
 
 
 
%通过GRNN神经网络进行训练
char    = [char1;char2]';
T       = [1;2]';
net_fsk = newgrnn(char,T,1.2);
 
char    = [char3;char4]';
T       = [1;2]';
net_psk = newgrnn(char,T,1.2); 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%加载信号进行测试
%通过大量的循环测试,计算正确率
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
zql  = 0;
 
%运行的时候,尽量将下面的两个参数指标设置大点,这样结果才精确
MTKL  = 100;
SNRS  = [5:0.25:9,10:15];
Bers  = zeros(length(SNRS),1);
 
for jj = 1:length(SNRS)
    for i = 1:MTKL
        SNRS(jj)
        i
        s = RandStream('mt19937ar','Seed',i);
        RandStream.setGlobalStream(s);
        %长度
        N      = N0;
        %SNR
        SNR    = SNRS(jj);
        %2FSK
        y_2FSK = func_2FSK(N);
        %4FSK
        y_4FSK = func_4FSK(N);
        %BPSK
        y_2PSK = func_2PSK(N);
        %QPSK
        y_4PSK = func_4PSK(N);
 
        
        
        %设置单独的一种调制信号
        tmps   = [1,1,1,1];%2FSK
        if tmps(1) == 1
           datas = y_2FSK;
        end
        if tmps(1) == 2
           datas = y_4FSK;
        end
        if tmps(1) == 3
           datas = y_2PSK;
        end
        if tmps(1) == 4
           datas = y_4PSK;
        end
 
        datas  = func_multipath(datas);
        data   = func_add_noise(datas,SNR); 
 
 
        [p,f] = func_power(data,Ns);
        len   = func_fsk_psk_check(p);
 
 
        flag  = 0;
        %首先进行FSK和PSK两种模式的区分
        if len >= Level%为FSK模式
           %根据识别参数进行调制类型的辨识
           char = real(func_para_check(data,length(data)));
           T    = round(sim(net_fsk,char'));
           if T == 1
              flag = 1;
           end
           if T == 2
              flag = 2;
           end
        else%为PSK模式
           %根据识别参数进行调制类型的辨识
           char = real(func_para_check(data,length(data)));
           T    = round(sim(net_psk,char'));
           if T == 1
              flag = 3;
           end
           if T == 2
              flag = 4;
           end
        end
        if flag == tmps(1)
           zql = zql + 1;
        end
    end
 
    %识别正确率
    Bers(jj) = zql/MTKL;
    zql      = 0;
end
 
 
R = 100*mean(Bers,2);
01-126m

4.完整MATLAB

V

你可能感兴趣的:(Matlab通信和信号,matlab,高阶累积量,BP神经网络-GRNN网络,调制方式识别)