目录
不同优化算法的比较分析
优化算法的实验设定
2D可视化实验
简单拟合实验
学习率调整
AdaGrad算法
RMSprop算法
梯度估计修正
动量法
Adam算法
不同优化器的3D可视化对比
选做题
参考
除了批大小对模型收敛速度的影响外,学习率和梯度估计也是影响神经网络优化的重要因素。
神经网络优化中常用的优化方法也主要是如下两方面的改进,包括:
学习率调整:通过自适应地调整学习率使得优化更稳定。AdaGrad、RMSprop、AdaDelta算法等。
梯度估计修正:通过修正每次迭代时估计的梯度方向来加快收敛速度。动量法、Nesterov加速梯度方法等。
本节还会介绍综合学习率调整和梯度估计修正的优化算法,如Adam算法。
飞桨AI Studio - 人工智能学习与实训社区 (baidu.com)
为了更好地展示不同优化算法的能力对比,我们选择一个二维空间中的凸函数,然后用不同的优化算法来寻找最优解,并可视化梯度下降过程的轨迹。
# coding=gbk
from Op import Op
import torch
import numpy as np
from matplotlib import pyplot as plt
class OptimizedFunction(Op):
def __init__(self, w):
super(OptimizedFunction, self).__init__()
self.w = w
self.params = {'x': 0}
self.grads = {'x': 0}
def forward(self, x):
self.params['x'] = x
return torch.matmul(self.w.T, torch.tensor(torch.square(self.params['x']),dtype=torch.float32))
def backward(self):
self.grads['x'] = 2 * torch.multiply(self.w.T, self.params['x'])
在上述代码中所使用到的函数:
# 优化器基类
class Optimizer(object):
def __init__(self, init_lr, model):
"""
优化器类初始化
"""
# 初始化学习率,用于参数更新的计算
self.init_lr = init_lr
# 指定优化器需要优化的模型
self.model = model
@abstractmethod
def step(self):
"""
定义每次迭代如何更新参数
"""
pass
class Op(object):
def __init__(self):
pass
def __call__(self, inputs):
return self.forward(inputs)
def forward(self, inputs):
raise NotImplementedError
def backward(self, inputs):
raise NotImplementedError
class SimpleBatchGD(Optimizer):
def __init__(self, init_lr, model):
super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
def step(self):
# 参数更新
# 遍历所有参数,按照公式(3.8)和(3.9)更新参数
if isinstance(self.model.params, dict):
for key in self.model.params.keys():
self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
import copy
def train_f(model, optimizer, x_init, epoch):
x = x_init
all_x = []
losses = []
for i in range(epoch):
all_x.append(copy.copy(x.numpy()))
loss = model(x)
losses.append(loss)
model.backward()
optimizer.step()
x = model.params['x']
print(all_x)
return torch.tensor(all_x), losses
定义Visualization类:
class Visualization(object):
def __init__(self):
"""
初始化可视化类
"""
# 只画出参数x1和x2在区间[-5, 5]的曲线部分
x1 = np.arange(-5, 5, 0.1)
x2 = np.arange(-5, 5, 0.1)
x1, x2 = np.meshgrid(x1, x2)
self.init_x = torch.tensor([x1, x2])
def plot_2d(self, model, x, fig_name):
"""
可视化参数更新轨迹
"""
fig, ax = plt.subplots(figsize=(10, 6))
cp = ax.contourf(self.init_x[0], self.init_x[1], model(self.init_x.transpose(0,1)), colors=['#e4007f', '#f19ec2', '#e86096', '#eb7aaa', '#f6c8dc', '#f5f5f5', '#000000'])
c = ax.contour(self.init_x[0], self.init_x[1], model(self.init_x.transpose(0,1)), colors='black')
cbar = fig.colorbar(cp)
ax.plot(x[:, 0], x[:, 1], '-o', color='#000000')
ax.plot(0, 'r*', markersize=18, color='#fefefe')
ax.set_xlabel('$x1$')
ax.set_ylabel('$x2$')
ax.set_xlim((-2, 5))
ax.set_ylim((-2, 5))
plt.savefig(fig_name)
可视化代码:
import numpy as np
def train_and_plot_f(model, optimizer, epoch, fig_name):
"""
训练模型并可视化参数更新轨迹
"""
# 设置x的初始值
x_init = torch.tensor([3, 4], dtype=torch.float32)
print('x1 initiate: {}, x2 initiate: {}'.format(x_init[0].numpy(), x_init[1].numpy()))
x, losses = train_f(model, optimizer, x_init, epoch)
print(x)
losses = np.array(losses)
# 展示x1、x2的更新轨迹
vis = Visualization()
vis.plot_2d(model, x, fig_name)
from Op import SimpleBatchGD
# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = SimpleBatchGD(init_lr=0.2, model=model)
train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para.pdf')
这里我们随机生成一组数据作为数据样本,再构建一个简单的单层前馈神经网络,用于前向计算。
与Paddle API对比,验证正确性
分别实例化自定义SimpleBatchGD优化器和调用torch.optim.SGD API, 验证自定义优化器的正确性。
# 固定随机种子
torch.manual_seed(0)
# 随机生成shape为(1000,2)的训练数据
X = torch.randn([1000, 2])
w = torch.tensor([0.5, 0.8])
w = torch.unsqueeze(w, dim=1)
noise = 0.01 * torch.rand([1000])
noise = torch.unsqueeze(noise, dim=1)
# 计算y
y = torch.matmul(X, w) + noise
# 打印X, y样本
print('X: ', X[0].numpy())
print('y: ', y[0].numpy())
# X,y组成训练样本数据
data = torch.concat((X, y), dim=1)
print('input data shape: ', data.shape)
print('data: ', data[0].numpy())
运行结果:
实现代码:
class Linear(Op):
def __init__(self, input_size, weight_init=torch.randn, bias_init=torch.zeros):
super(Linear, self).__init__()
self.params = {}
self.params['W'] = weight_init(size=[input_size, 1])
self.params['b'] = bias_init(size=[1])
self.inputs = None
self.grads = {}
def forward(self, inputs):
self.inputs = inputs
self.outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
return self.outputs
def backward(self, labels):
K = self.inputs.shape[0]
self.grads['W'] = 1. / K * torch.matmul(self.inputs.T, (self.outputs - labels))
self.grads['b'] = 1. / K * torch.sum(self.outputs - labels, dim=0)
def train(data, num_epochs, batch_size, model, calculate_loss, optimizer, verbose=False):
# 记录每个回合损失的变化
epoch_loss = []
# 记录每次迭代损失的变化
iter_loss = []
N = len(data)
for epoch_id in range(num_epochs):
# np.random.shuffle(data) #不再随机打乱数据
# 将训练数据进行拆分,每个mini_batch包含batch_size条的数据
mini_batches = [data[i:i+batch_size] for i in range(0, N, batch_size)]
for iter_id, mini_batch in enumerate(mini_batches):
# data中前两个分量为X
inputs = mini_batch[:, :-1]
# data中最后一个分量为y
labels = mini_batch[:, -1:]
# 前向计算
outputs = model(inputs)
# 计算损失
loss = calculate_loss(outputs, labels).numpy()
# 计算梯度
model.backward(labels)
# 梯度更新
optimizer.step()
iter_loss.append(loss)
# verbose = True 则打印当前回合的损失
if verbose:
print('Epoch {:3d}, loss = {:.4f}'.format(epoch_id, np.mean(iter_loss)))
epoch_loss.append(np.mean(iter_loss))
return iter_loss, epoch_loss
def plot_loss(iter_loss, epoch_loss, fig_name):
plt.figure(figsize=(10, 4))
ax1 = plt.subplot(121)
ax1.plot(iter_loss, color='#191970')
plt.title('iteration loss')
ax2 = plt.subplot(122)
ax2.plot(epoch_loss, color='#2F4F4F')
plt.title('epoch loss')
plt.savefig(fig_name)
plt.show()
import torch.nn as nn
def train_and_plot(optimizer, fig_name):
# 定义均方差损失
mse = nn.MSELoss()
iter_loss, epoch_loss = train(data, num_epochs=30, batch_size=64, model=model, calculate_loss=mse, optimizer=optimizer)
plot_loss(iter_loss, epoch_loss, fig_name)
损失可视化代码:
# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = SimpleBatchGD(init_lr=0.01, model=model)
train_and_plot(opt, 'opti-loss.pdf')
可视化结果:
可以看出的是,loss不断减小,模型收敛。
对比实验:
torch.manual_seed(0)
x = data[0, :-1].unsqueeze(0)
y = data[0, -1].unsqueeze(0)
model1 = Linear(2)
print('model1 parameter W: ', model1.params['W'].numpy())
opt1 = SimpleBatchGD(init_lr=0.01, model=model1)
output1 = model1(x)
model2 = nn.Linear(2, 1)
model2.weight=torch.nn.Parameter(torch.tensor(model1.params['W'].T))
print('model2 parameter W: ', model2.state_dict()['weight'].numpy())
output2 = model2(x)
model1.backward(y)
opt1.step()
print('model1 parameter W after train step: ', model1.params['W'].numpy())
opt2 = torch.optim.SGD(lr=0.01, params=model2.parameters())
loss = torch.nn.functional.mse_loss(output2, y) / 2
loss.backward()
opt2.step()
opt2.zero_grad()
print('model2 parameter W after train step: ', model2.state_dict()['weight'].numpy())
输出结果:
可以看出的是,自定义优化器和torch自带的优化器的结果一致,优化器实现正确!
学习率是神经网络优化时的重要超参数。在梯度下降法中,学习率αα的取值非常关键,如果取值过大就不会收敛,如果过小则收敛速度太慢。
常用的学习率调整方法包括如下几种方法:
学习率衰减:如分段常数衰减(Piecewise Constant Decay)、余弦衰减(Cosine Decay)等;
学习率预热:如逐渐预热(Gradual Warmup) 等;
周期性学习率调整:如循环学习率等;
自适应调整学习率的方法:如AdaGrad、RMSprop、AdaDelta等。自适应学习率方法可以针对每个参数设置不同的学习率。
下面我们来详细介绍AdaGrad和RMSprop算法。
class Adagrad(Optimizer):
def __init__(self, init_lr, model, epsilon):
"""
Adagrad 优化器初始化
输入:
- init_lr: 初始学习率
- model:模型,model.params存储模型参数值
- epsilon:保持数值稳定性而设置的非常小的常数
"""
super(Adagrad, self).__init__(init_lr=init_lr, model=model)
self.G = {}
for key in self.model.params.keys():
self.G[key] = 0
self.epsilon = epsilon
def adagrad(self, x, gradient_x, G, init_lr):
"""
adagrad算法更新参数,G为参数梯度平方的累计值。
"""
G += gradient_x ** 2
x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
return x, G
def step(self):
"""
参数更新
"""
for key in self.model.params.keys():
self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
self.model.grads[key],
self.G[key],
self.init_lr)
# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Adagrad(init_lr=0.5, model=model, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para2.pdf')
由图可知AdaGrad算法在前几个回合更新时参数更新幅度较大,随着epoch增加,学习率逐渐缩小,参数更新幅度逐渐缩小。在AdaGrad算法中,如果某个参数的偏导数累积比较大,其学习率相对较小。相反,如果其偏导数累积较小,其学习率相对较大。但整体随着迭代次数的增加,学习率逐渐缩小。该算法的缺点是在经过一定次数的迭代依然没有找到最优点时,由于这时的学习率已经非常小,难以找到最优。
可视化:
# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adagrad(init_lr=0.1, model=model, epsilon=1e-7)
train_and_plot(opt, 'opti-loss2.pdf')
可视化损失:
从图中看到,损失收敛,逼近0,说明算法能够逼近最优点。
class RMSprop(Optimizer):
def __init__(self, init_lr, model, beta, epsilon):
super(RMSprop, self).__init__(init_lr=init_lr, model=model)
self.G = {}
for key in self.model.params.keys():
self.G[key] = 0
self.beta = beta
self.epsilon = epsilon
def rmsprop(self, x, gradient_x, G, init_lr):
G = self.beta * G + (1 - self.beta) * gradient_x ** 2
x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
return x, G
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
self.model.grads[key],
self.G[key],
self.init_lr)
# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para3.pdf')
损失可视化代码:
# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot(opt, 'opti-loss3.pdf')
损失可视化:
除了调整学习率之外,还可以进行梯度估计修正。在小批量梯度下降法中,由于每次迭代的样本具有一定的随机性,因此每次迭代的梯度估计和整个训练集上的最优梯度并不一致。如果每次选取样本数量比较小,损失会呈振荡的方式下降。
一种有效地缓解梯度估计随机性的方式是通过使用最近一段时间内的平均梯度来代替当前时刻的随机梯度来作为参数更新的方向,从而提高优化速度。
用之前积累动量来替代真正的梯度。每次迭代的梯度可以看作加速度。
代码如下:
class Momentum(Optimizer):
def __init__(self, init_lr, model, rho):
super(Momentum, self).__init__(init_lr=init_lr, model=model)
self.delta_x = {}
for key in self.model.params.keys():
self.delta_x[key] = 0
self.rho = rho
def momentum(self, x, gradient_x, delta_x, init_lr):
delta_x = self.rho * delta_x - init_lr * gradient_x
x += delta_x
return x, delta_x
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
self.model.grads[key],
self.delta_x[key],
self.init_lr)
# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para4.pdf')
损失可视化代码:
# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot(opt, 'opti-loss4.pdf')
可视化结果:
Adam算法(自适应矩估计算法)可以看作动量法和RMSprop算法的结合,不但使用动量作为参数更新方向,而且可以自适应调整学习率。
代码如下:
class Adam(Optimizer):
def __init__(self, init_lr, model, beta1, beta2, epsilon):
super(Adam, self).__init__(init_lr=init_lr, model=model)
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.M, self.G = {}, {}
for key in self.model.params.keys():
self.M[key] = 0
self.G[key] = 0
self.t = 1
def adam(self, x, gradient_x, G, M, t, init_lr):
M = self.beta1 * M + (1 - self.beta1) * gradient_x
G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
M_hat = M / (1 - self.beta1 ** t)
G_hat = G / (1 - self.beta2 ** t)
t += 1
x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
return x, G, M, t
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
self.model.grads[key],
self.G[key],
self.M[key],
self.t,
self.init_lr)
# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Adam(init_lr=0.2, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para5.pdf')
输出结果:
损失可视化代码如下:
# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adam(init_lr=0.1, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot(opt, 'opti-loss5.pdf')
可视化结果:
import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
class Op(object):
def __init__(self):
pass
def __call__(self, inputs):
return self.forward(inputs)
# 输入:张量inputs
# 输出:张量outputs
def forward(self, inputs):
# return outputs
raise NotImplementedError
# 输入:最终输出对outputs的梯度outputs_grads
# 输出:最终输出对inputs的梯度inputs_grads
def backward(self, outputs_grads):
# return inputs_grads
raise NotImplementedError
class Optimizer(object): # 优化器基类
def __init__(self, init_lr, model):
# 初始化学习率,用于参数更新的计算
self.init_lr = init_lr
# 指定优化器需要优化的模型
self.model = model
def step(self):
pass
class SimpleBatchGD(Optimizer):
def __init__(self, init_lr, model):
super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
def step(self):
# 参数更新
if isinstance(self.model.params, dict):
for key in self.model.params.keys():
self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
class Adagrad(Optimizer):
def __init__(self, init_lr, model, epsilon):
super(Adagrad, self).__init__(init_lr=init_lr, model=model)
self.G = {}
for key in self.model.params.keys():
self.G[key] = 0
self.epsilon = epsilon
def adagrad(self, x, gradient_x, G, init_lr):
G += gradient_x ** 2
x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
return x, G
def step(self):
"""
参数更新
"""
for key in self.model.params.keys():
self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
self.model.grads[key],
self.G[key],
self.init_lr)
class RMSprop(Optimizer):
def __init__(self, init_lr, model, beta, epsilon):
"""
RMSprop优化器初始化
输入:
- init_lr:初始学习率
- model:模型,model.params存储模型参数值
- beta:衰减率
- epsilon:保持数值稳定性而设置的常数
"""
super(RMSprop, self).__init__(init_lr=init_lr, model=model)
self.G = {}
for key in self.model.params.keys():
self.G[key] = 0
self.beta = beta
self.epsilon = epsilon
def rmsprop(self, x, gradient_x, G, init_lr):
"""
rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
"""
G = self.beta * G + (1 - self.beta) * gradient_x ** 2
x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
return x, G
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
self.model.grads[key],
self.G[key],
self.init_lr)
class Momentum(Optimizer):
def __init__(self, init_lr, model, rho):
"""
Momentum优化器初始化
输入:
- init_lr:初始学习率
- model:模型,model.params存储模型参数值
- rho:动量因子
"""
super(Momentum, self).__init__(init_lr=init_lr, model=model)
self.delta_x = {}
for key in self.model.params.keys():
self.delta_x[key] = 0
self.rho = rho
def momentum(self, x, gradient_x, delta_x, init_lr):
"""
momentum算法更新参数,delta_x为梯度的加权移动平均
"""
delta_x = self.rho * delta_x - init_lr * gradient_x
x += delta_x
return x, delta_x
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
self.model.grads[key],
self.delta_x[key],
self.init_lr)
class Adam(Optimizer):
def __init__(self, init_lr, model, beta1, beta2, epsilon):
"""
Adam优化器初始化
输入:
- init_lr:初始学习率
- model:模型,model.params存储模型参数值
- beta1, beta2:移动平均的衰减率
- epsilon:保持数值稳定性而设置的常数
"""
super(Adam, self).__init__(init_lr=init_lr, model=model)
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.M, self.G = {}, {}
for key in self.model.params.keys():
self.M[key] = 0
self.G[key] = 0
self.t = 1
def adam(self, x, gradient_x, G, M, t, init_lr):
M = self.beta1 * M + (1 - self.beta1) * gradient_x
G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
M_hat = M / (1 - self.beta1 ** t)
G_hat = G / (1 - self.beta2 ** t)
t += 1
x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
return x, G, M, t
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
self.model.grads[key],
self.G[key],
self.M[key],
self.t,
self.init_lr)
class OptimizedFunction3D(Op):
def __init__(self):
super(OptimizedFunction3D, self).__init__()
self.params = {'x': 0}
self.grads = {'x': 0}
def forward(self, x):
self.params['x'] = x
return x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]
def backward(self):
x = self.params['x']
gradient1 = 2 * x[0] + x[1]
gradient2 = 2 * x[1] + 3 * x[1] ** 2 + x[0]
grad1 = torch.Tensor([gradient1])
grad2 = torch.Tensor([gradient2])
self.grads['x'] = torch.cat([grad1, grad2])
class Visualization3D(animation.FuncAnimation):
""" 绘制动态图像,可视化参数更新轨迹 """
def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=600, blit=True, **kwargs):
self.fig = fig
self.ax = ax
self.xy_values = xy_values
self.z_values = z_values
frames = max(xy_value.shape[0] for xy_value in xy_values)
self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
for _, label, color in zip_longest(xy_values, labels, colors)]
super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
interval=interval, blit=blit, **kwargs)
def init_animation(self):
# 数值初始化
for line in self.lines:
line.set_data([], [])
return self.lines
def animate(self, i):
# 将x,y,z三个数据传入,绘制三维图像
for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
line.set_data(xy_value[:i, 0], xy_value[:i, 1])
line.set_3d_properties(z_value[:i])
return self.lines
def train_f(model, optimizer, x_init, epoch):
x = x_init
all_x = []
losses = []
for i in range(epoch):
all_x.append(copy.deepcopy(x.numpy()))
loss = model(x)
losses.append(loss)
model.backward()
optimizer.step()
x = model.params['x']
return torch.Tensor(np.array(all_x)), losses
# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.01, model=model1)
model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)
model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)
model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.01, model=model4, rho=0.9)
model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.1, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
models = [model1, model2, model3, model4, model5]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam]
x_all_opts = []
z_all_opts = []
# 使用不同优化器训练
for model, opt in zip(models, opts):
x_init = torch.FloatTensor([2, 3])
x_one_opt, z_one_opt = train_f(model, opt, x_init, 150) # epoch
# 保存参数值
x_all_opts.append(x_one_opt.numpy())
z_all_opts.append(np.squeeze(z_one_opt))
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))
model = OptimizedFunction3D()
# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy() # 改为 model(init_x).numpy() David 2022.12.4
ax.plot_surface(X, Y, Z, cmap='rainbow')
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam']
colors = ['#f6373c', '#f6f237', '#45f637', '#37f0f6', '#000000']
animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper left')
plt.show()
animator.save('animation.gif')
实现效果:
实现代码:
import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cm
class Op(object):
def __init__(self):
pass
def __call__(self, inputs):
return self.forward(inputs)
# 输入:张量inputs
# 输出:张量outputs
def forward(self, inputs):
# return outputs
raise NotImplementedError
# 输入:最终输出对outputs的梯度outputs_grads
# 输出:最终输出对inputs的梯度inputs_grads
def backward(self, outputs_grads):
# return inputs_grads
raise NotImplementedError
class Optimizer(object): # 优化器基类
def __init__(self, init_lr, model):
"""
优化器类初始化
"""
# 初始化学习率,用于参数更新的计算
self.init_lr = init_lr
# 指定优化器需要优化的模型
self.model = model
def step(self):
"""
定义每次迭代如何更新参数
"""
pass
class SimpleBatchGD(Optimizer):
def __init__(self, init_lr, model):
super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
def step(self):
# 参数更新
if isinstance(self.model.params, dict):
for key in self.model.params.keys():
self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
class Adagrad(Optimizer):
def __init__(self, init_lr, model, epsilon):
super(Adagrad, self).__init__(init_lr=init_lr, model=model)
self.G = {}
for key in self.model.params.keys():
self.G[key] = 0
self.epsilon = epsilon
def adagrad(self, x, gradient_x, G, init_lr):
"""
adagrad算法更新参数,G为参数梯度平方的累计值。
"""
G += gradient_x ** 2
x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
return x, G
def step(self):
"""
参数更新
"""
for key in self.model.params.keys():
self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
self.model.grads[key],
self.G[key],
self.init_lr)
class RMSprop(Optimizer):
def __init__(self, init_lr, model, beta, epsilon):
super(RMSprop, self).__init__(init_lr=init_lr, model=model)
self.G = {}
for key in self.model.params.keys():
self.G[key] = 0
self.beta = beta
self.epsilon = epsilon
def rmsprop(self, x, gradient_x, G, init_lr):
"""
rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
"""
G = self.beta * G + (1 - self.beta) * gradient_x ** 2
x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
return x, G
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
self.model.grads[key],
self.G[key],
self.init_lr)
class Momentum(Optimizer):
def __init__(self, init_lr, model, rho):
super(Momentum, self).__init__(init_lr=init_lr, model=model)
self.delta_x = {}
for key in self.model.params.keys():
self.delta_x[key] = 0
self.rho = rho
def momentum(self, x, gradient_x, delta_x, init_lr):
"""
momentum算法更新参数,delta_x为梯度的加权移动平均
"""
delta_x = self.rho * delta_x - init_lr * gradient_x
x += delta_x
return x, delta_x
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
self.model.grads[key],
self.delta_x[key],
self.init_lr)
class Adam(Optimizer):
def __init__(self, init_lr, model, beta1, beta2, epsilon):
super(Adam, self).__init__(init_lr=init_lr, model=model)
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.M, self.G = {}, {}
for key in self.model.params.keys():
self.M[key] = 0
self.G[key] = 0
self.t = 1
def adam(self, x, gradient_x, G, M, t, init_lr):
M = self.beta1 * M + (1 - self.beta1) * gradient_x
G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
M_hat = M / (1 - self.beta1 ** t)
G_hat = G / (1 - self.beta2 ** t)
t += 1
x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
return x, G, M, t
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
self.model.grads[key],
self.G[key],
self.M[key],
self.t,
self.init_lr)
class OptimizedFunction3D(Op):
def __init__(self):
super(OptimizedFunction3D, self).__init__()
self.params = {'x': 0}
self.grads = {'x': 0}
def forward(self, x):
self.params['x'] = x
return - x[0] * x[0] / 2 + x[1] * x[1] / 1 # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]
def backward(self):
x = self.params['x']
gradient1 = - 2 * x[0] / 2
gradient2 = 2 * x[1] / 1
grad1 = torch.Tensor([gradient1])
grad2 = torch.Tensor([gradient2])
self.grads['x'] = torch.cat([grad1, grad2])
class Visualization3D(animation.FuncAnimation):
""" 绘制动态图像,可视化参数更新轨迹 """
def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):
self.fig = fig
self.ax = ax
self.xy_values = xy_values
self.z_values = z_values
frames = max(xy_value.shape[0] for xy_value in xy_values)
self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
for _, label, color in zip_longest(xy_values, labels, colors)]
self.points = [ax.plot([], [], [], color=color, markeredgewidth=1, markeredgecolor='black', marker='o')[0]
for _, color in zip_longest(xy_values, colors)]
# print(self.lines)
super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
interval=interval, blit=blit, **kwargs)
def init_animation(self):
# 数值初始化
for line in self.lines:
line.set_data_3d([], [], [])
for point in self.points:
point.set_data_3d([], [], [])
return self.points + self.lines
def animate(self, i):
# 将x,y,z三个数据传入,绘制三维图像
for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
line.set_data_3d(xy_value[:i, 0], xy_value[:i, 1], z_value[:i])
for point, xy_value, z_value in zip(self.points, self.xy_values, self.z_values):
point.set_data_3d(xy_value[i, 0], xy_value[i, 1], z_value[i])
return self.points + self.lines
def train_f(model, optimizer, x_init, epoch):
x = x_init
all_x = []
losses = []
for i in range(epoch):
all_x.append(copy.deepcopy(x.numpy())) # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.
loss = model(x)
losses.append(loss)
model.backward()
optimizer.step()
x = model.params['x']
return torch.Tensor(np.array(all_x)), losses
# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.05, model=model1)
model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.05, model=model2, epsilon=1e-7)
model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)
model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.05, model=model4, rho=0.9)
model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.05, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
models = [model5, model2, model3, model4, model1]
opts = [opt_adam, opt_adagrad, opt_rmsprop, opt_momentum, opt_gd]
x_all_opts = []
z_all_opts = []
# 使用不同优化器训练
for model, opt in zip(models, opts):
x_init = torch.FloatTensor([0.00001, 0.5])
x_one_opt, z_one_opt = train_f(model, opt, x_init, 100) # epoch
# 保存参数值
x_all_opts.append(x_one_opt.numpy())
z_all_opts.append(np.squeeze(z_one_opt))
# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-1, 2, 0.01)
x2 = np.arange(-1, 1, 0.05)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))
model = OptimizedFunction3D()
# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy() # 改为 model(init_x).numpy() David 2022.12.4
surf = ax.plot_surface(X, Y, Z, edgecolor='grey', cmap=cm.coolwarm)
# fig.colorbar(surf, shrink=0.5, aspect=1)
ax.set_zlim(-3, 2)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
labels = ['Adam', 'AdaGrad', 'RMSprop', 'Momentum', 'SGD']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']
animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper right')
plt.show()
实现结果:
NNDL 实验八 网络优化与正则化(3)不同优化算法比较
百度AI Studio课程_学习成就梦想,AI遇见未来_AI课程 - 百度AI Studio - 人工智能学习与实训社区 (baidu.com)
CS231n Convolutional Neural Networks for Visual Recognition