运行jupyter notebook 时出现PermissionError: [WinError 5] 拒绝访问。: ‘../data‘

报错如下:
运行jupyter notebook 时出现PermissionError: [WinError 5] 拒绝访问。: ‘../data‘_第1张图片
运行jupyter notebook 时出现PermissionError: [WinError 5] 拒绝访问。: ‘../data‘_第2张图片
试过很多解决办法,比如在miniconda3下找到python安装包python.exe,右击点属性-兼容性-以管理员身份运行,最后再重新进入虚拟环境时会会显示fail to create process,从而无法打开jupyter notebook,取消管理员身份可恢复正常。再比如给jupyter赋予管理员权限,统统没用。最后尝试从源头找问题,发现第一个问题是没有root权限:在这里插入图片描述
根据提示的路径以文档的形式打开torch.py,把root里的地址换成自己想要存的地方D:\LenovoSoftstore\data1:
运行jupyter notebook 时出现PermissionError: [WinError 5] 拒绝访问。: ‘../data‘_第3张图片
再次重新打开虚拟环境进入jupyter notebook可正常运行:
运行jupyter notebook 时出现PermissionError: [WinError 5] 拒绝访问。: ‘../data‘_第4张图片
此外,修改root路径之前,我还对miniconda3文件夹的权限进行了修改,如果只进行root路径修改无效的话,可以对miniconda3文件夹进行设置之后再重新运行,右击miniconda3把User中的完全控制、修改、写入三个权限打上对号,修改如下:
运行jupyter notebook 时出现PermissionError: [WinError 5] 拒绝访问。: ‘../data‘_第5张图片

此外,附上此次在python运行的完整代码:

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]
#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')
lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

运行结果如下:
运行jupyter notebook 时出现PermissionError: [WinError 5] 拒绝访问。: ‘../data‘_第6张图片

你可能感兴趣的:(jupyter,pytorch,python)