【1】MediaPipe手部识别示例代码

上回说到,mediapipe如何安装,这回我们来看看mediapipe是如何识别手的位置和返回坐标的。

首先我们调用mediapipe库

import mediapipe as mp
import cv2
import numpy as np

之后我们使用此代码进行识别

mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_utils.DrawingSpec
mp_hands = mp.solutions.hands
IMAGE_FILES = ["p2.jpg"]
with mp_hands.Hands(
    static_image_mode=True,
    max_num_hands=2,
    min_detection_confidence=0.5) as hands:
  for idx, file in enumerate(IMAGE_FILES):
    
    image = cv2.flip(cv2.imread(file), 1)
    
    results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

    
    print('Handedness:', results.multi_handedness)
    if not results.multi_hand_landmarks:
      continue
    image_height, image_width, _ = image.shape
    annotated_image = image.copy()
    for hand_landmarks in results.multi_hand_landmarks:
      
      print(
          f'#5: (',
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_MCP].x * image_width}, '
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_MCP].y * image_height})\n'
          f'#6: (',
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_PIP].x * image_width}, '
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_PIP].y * image_height})\n'
          f'#7: (',
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_DIP].x * image_width}, '
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_DIP].y * image_height})\n'
          f'#8: (',
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * image_width}, '
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * image_height})\n'
          f'#12: (',
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].x * image_width}, '
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].y * image_height})\n'
          f'#16: (',
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.RING_FINGER_TIP].x * image_width}, '
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.RING_FINGER_TIP].y * image_height})\n'
          f'#20: (',
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.PINKY_TIP].x * image_width}, '
          f'{hand_landmarks.landmark[mp_hands.HandLandmark.PINKY_TIP].y * image_height})\n'
          
      )
      mp_drawing.draw_landmarks(
          annotated_image,
          hand_landmarks,
          mp_hands.HAND_CONNECTIONS,
          mp_drawing_styles(),
          mp_drawing_styles())
    cv2.imwrite(
        'annotated_image' + str(idx) + '.png', cv2.flip(annotated_image, 1))
    print(cv2.imread("hand.jpg").shape)   

可能有朋友要问,怎么能知道返回的是哪个点的位置呢,我们看一看它手指关节点对照表,然后就可以返回它们的x,y,z的值了。但是要注意,mediapipe的坐标值都是经过归一化的,如果需要绝对坐标,需要分别对应地乘上图片的宽和高。

【1】MediaPipe手部识别示例代码_第1张图片

 此图是示例代码返回的数值,因为示例图片为某非公开项目的图片,因此不予公布效果图。

【1】MediaPipe手部识别示例代码_第2张图片

你可能感兴趣的:(#,mediapipe,人工智能,python,深度学习,开发语言)