循环神经网络——RNN

RNN的结构:
循环神经网络——RNN_第1张图片
RNN的分类:
循环神经网络——RNN_第2张图片

import math

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

#定义模型
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)

#初始化隐状态(隐藏层数,批量大小,隐藏单元数)
state = torch.zeros((1,batch_size,num_hiddens))
print(state.shape)

X = torch.rand(size=(num_steps,batch_size,len(vocab)))
Y,state_new = rnn_layer(X,state)
print(Y.shape,state_new.shape)

class RNNModel(nn.Module):
    """循环神经⽹络模型"""
    def __init__(self, rnn_layer, vocab_size, **kwargs):
        super(RNNModel, self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
    def forward(self, inputs, state):
        X = F.one_hot(inputs.T.long(), self.vocab_size)
        X = X.to(torch.float32)
        Y, state = self.rnn(X, state)
        # 全连接层⾸先将Y的形状改为(时间步数*批量⼤⼩,隐藏单元数)
        # 它的输出形状是(时间步数*批量⼤⼩,词表⼤⼩)。
        output = self.linear(Y.reshape((-1, Y.shape[-1])))
        return output, state
    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return torch.zeros((self.num_directions * self.rnn.num_layers,
            batch_size, self.num_hiddens),
            device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
            self.num_directions * self.rnn.num_layers,
            batch_size, self.num_hiddens), device=device),
            torch.zeros((
            self.num_directions * self.rnn.num_layers,
            batch_size, self.num_hiddens), device=device))

device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
d2l.plt.show()
perplexity 1.3, 308883.8 tokens/sec on cuda:0
time traveller how al in ongat dee taing ntway way dalenat he ta
traveller ffreath a d meracollorimes ap cint ling hour ghas

循环神经网络——RNN_第3张图片
总结:

  • RNN的输出取决于输入和当前时间的隐变量
  • 应用到语言模型中时,RNN根据当前词预测下一次时刻词
  • 通常使用困惑都来衡量语言模型的好坏

你可能感兴趣的:(Python,PyTorch,rnn,深度学习,神经网络)