CNN实现MNIST数据集手写数字识别

1.MNIST数据集

MNIST数据集是由0 到9 的手写数字图像构成的。训练图像有6 万张,测试图像有1 万张每一张图片都有对应的标签数字。因此这个测试集就可以作为验证集使用。

MNIST的图像,每张图片是包含28 像素× 28 像素的灰度图像(1 通道),各个像素的取值在0 到255 之间。每张图片都由一个28 ×28 的矩阵表示,每张图片都由一个784 维的向量表示(28*28=784)。

在这里插入图片描述
详细介绍参考:http://yann.lecun.com/exdb/mnist/

2.CNN的基础

卷积和池化,请读者参考:卷积层和池化层输出特征图大小的计算——以LeNet模型为例

3.模型结构
CNN实现MNIST数据集手写数字识别_第1张图片
模型有12层,从输入到输出,分别为,1:输入层,2:卷积层1,3:激活层,4:池化层,5:卷积层1,6:激活层,7:池化层,8:卷积层1,9:激活层,10:池化层,11:全连接层,12:全连接层

更细节信心,参见代码

4.代码实现

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt



batch_size = 64

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307),(0.3081)) #两个参数,平均值和标准差

])

train_dataset = datasets.MNIST(
    root="../dataset/mnist/",
    train= True,
    download= True,
    transform= transform
)

train_loader = DataLoader(train_dataset,
                          shuffle = True,
                          batch_size = batch_size)

test_dataset = datasets.MNIST(
    root="../dataset/mnist/",
    train=False,
    download=True,
    transform=transform
)

test_loder = DataLoader(test_dataset,
                        shuffle = True,
                        batch_size = batch_size)

'''
CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, 
dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
'''

'''
CLASS torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, 
dilation=1, return_indices=False, ceil_mode=False)
'''
class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = torch.nn.Conv2d(in_channels=1,out_channels=10,kernel_size=3)
        self.conv2 = torch.nn.Conv2d(in_channels=10,out_channels=20,kernel_size=3)
        self.conv3 = torch.nn.Conv2d(in_channels=20, out_channels=40, kernel_size=3)
        self.pooling1 = torch.nn.MaxPool2d(kernel_size=2)
        self.pooling2 = torch.nn.MaxPool2d(kernel_size=2)
        self.pooling3 = torch.nn.MaxPool2d(kernel_size=2)
        self.linear1 = torch.nn.Linear(40,32)  #想确定40这个值?是和
        self.linear2 = torch.nn.Linear(32, 10)

    def forward(self,x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.pooling1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.pooling2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.pooling3(x)
        x = x.view(x.size(0), -1)  # Flatten 改变张量形状
        #print(x.size(-1))
        # 此时 x.sixe() [64,40] 对应liner1中的40,具体linear1的40读者可以算出来,也可以采用偷懒的方法,运行代码,由print(x.size(-1))确定
        x = self.linear1(x)
        x = self.linear2(x)
        return x #最后一层不做激活,因为下一步输入到交叉损失函数中,交叉熵包含了激活层





model = Net()
#有GPU就使用GPU,没有就是用CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum= 0.5)


def train(epoch):
    total = 0
    running_loss = 0.0
    train_loss = 0.0 #记录每次epoch的损失
    accuracy = 0 #记录每次epoch的accuracy
    for batch_id, data in enumerate(train_loader,0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
        # forword + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)

        _, predicted = torch.max(outputs.data, dim=1)
        accuracy += (predicted == target).sum().item()
        total += target.size(0)

        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        train_loss = running_loss
        #每迭代300次,求一下这三百次迭代的平均
        if batch_id % 300 == 299:
            print('[%d, %5d] loss: %.3f' %(epoch+1, batch_id+1, running_loss / 300))
            running_loss = 0.0
    print('第 %d epoch的 Accuracy on train set: %d %%, Loss on train set: %f' % (epoch + 1, 100 * accuracy / total, train_loss))

    #返回acc和loss
    return 1.0 * accuracy / total, train_loss


def validation(epoch):
    correct = 0
    total = 0
    val_loss = 0.0
    with torch.no_grad():
        for data in test_loder:
            images, target = data
            images, target = images.to(device), target.to(device)
            outputs = model(images)
            loss = criterion(outputs, target)
            val_loss += loss.item()
            _, predicted = torch.max(outputs.data, dim=1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
    print('第 %d epoch的 Accuracy on validation set: %d %%, Loss on validation set: %f' %(epoch+1,100*correct / total, val_loss))

    #返回acc和loss
    return 1.0 * correct / total, val_loss



def draw_in_one(list,epoch):
    # x_axix,train_pn_dis这些都是长度相同的list()
    # 开始画图
    x_axix = [x for x in range(1, epoch+1)] #把ranage转化为list
    train_acc = list[0]
    train_loss = list[1]
    val_acc = list[2]
    val_loss = list[3]
    #sub_axix = filter(lambda x: x % 200 == 0, x_axix)
    plt.title('Result Analysis')
    plt.plot(x_axix, train_acc, color='green', label='training accuracy')
    plt.plot(x_axix, train_loss, color='red', label='training loss')
    plt.plot(x_axix, val_acc, color='skyblue', label='val accuracy')
    plt.plot(x_axix, val_loss, color='blue', label='val loss')
    plt.legend()  # 显示图例
    plt.xlabel('epoch times')
    plt.ylabel('rate')
    plt.show()
    # python 一个折线图绘制多个曲线
if __name__ == '__main__':

    train_loss = []
    train_acc = []

    val_loss = []
    val_acc = []
    epoches = 10
    list = []
    for epoch in range(epoches):
        acc1, loss1 = train(epoch)

        train_loss.append(loss1)
        train_acc.append(acc1)

        acc2, loss2 = validation(epoch)

        val_loss.append(loss2)
        val_acc.append(acc2)
    # 四幅图合并绘制
    list.append(train_acc)
    list.append(train_loss)
    list.append(val_acc)
    list.append(val_loss)
    draw_in_one(list, epoches)

在验证集上准确率达到97%

结果图片:
CNN实现MNIST数据集手写数字识别_第2张图片
打印的值:

E:\anaconda3\envs\pytorch\python.exe D:/PycharmProjects/pytorchProject/CNN实现手写数字识别.py
[1,   300] loss: 1.802
[1,   600] loss: 0.427
[1,   900] loss: 0.2671 epoch的 Accuracy on train set: 74 %, Loss on train set: 9.3619121 epoch的 Accuracy on validation set: 90 %, Loss on validation set: 43.828084
[2,   300] loss: 0.220
[2,   600] loss: 0.189
[2,   900] loss: 0.1572 epoch的 Accuracy on train set: 94 %, Loss on train set: 5.8369702 epoch的 Accuracy on validation set: 96 %, Loss on validation set: 19.365153
[3,   300] loss: 0.145
[3,   600] loss: 0.139
[3,   900] loss: 0.1303 epoch的 Accuracy on train set: 95 %, Loss on train set: 4.5855183 epoch的 Accuracy on validation set: 96 %, Loss on validation set: 19.153899
[4,   300] loss: 0.119
[4,   600] loss: 0.111
[4,   900] loss: 0.1104 epoch的 Accuracy on train set: 96 %, Loss on train set: 4.8320374 epoch的 Accuracy on validation set: 96 %, Loss on validation set: 15.444331
[5,   300] loss: 0.096
[5,   600] loss: 0.094
[5,   900] loss: 0.1065 epoch的 Accuracy on train set: 97 %, Loss on train set: 2.5742385 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 14.287680
[6,   300] loss: 0.087
[6,   600] loss: 0.089
[6,   900] loss: 0.0866 epoch的 Accuracy on train set: 97 %, Loss on train set: 3.0338456 epoch的 Accuracy on validation set: 96 %, Loss on validation set: 17.117328
[7,   300] loss: 0.079
[7,   600] loss: 0.085
[7,   900] loss: 0.0757 epoch的 Accuracy on train set: 97 %, Loss on train set: 2.5164577 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 11.392517
[8,   300] loss: 0.071
[8,   600] loss: 0.073
[8,   900] loss: 0.0698 epoch的 Accuracy on train set: 97 %, Loss on train set: 3.1961658 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 10.723463
[9,   300] loss: 0.067
[9,   600] loss: 0.067
[9,   900] loss: 0.0659 epoch的 Accuracy on train set: 98 %, Loss on train set: 2.0432119 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 10.331046
[10,   300] loss: 0.058
[10,   600] loss: 0.068
[10,   900] loss: 0.06410 epoch的 Accuracy on train set: 98 %, Loss on train set: 1.77116110 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 11.031956

Process finished with exit code 0

你可能感兴趣的:(pytorch,cnn,手写数字识别,MNIST)