用pytorch写一个WGAN的代码需要先定义一个网络架构,然后定义生成器和判别器。这里是一段示例代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Generator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.leaky_relu(self.fc1(x))
x = F.leaky_relu(self.fc2(x))
return F.tanh(self.fc3(x))
class Discriminator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.leaky_relu(self.fc1(x))
x = F.leaky_relu(self.fc2(x))
return F.sigmoid(self.fc3(x))
在定义了生成器和判别器之后,就可以开始训练模型了。下面是一段训练模型的代码示例:
# 定义超参数
input_size = 784
hidden_size = 128
output_size = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 10
# 定义模型
G = Generator(input_size, hidden_size, output_size)
D = Discriminator(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.BCELoss()
G_optimizer = torch.optim.Adam(G.parameters(), lr=learning_rate)
D_optimizer = torch.optim.Adam(D.parameters(), lr=learning_rate)