要介绍朴素贝叶斯算法(Naive Bayes),那就得先介绍贝叶斯分类算法,贝叶斯分类算法是统计分类算法的一种,他是一类利用概率统计知识进行的一种分类算法。而朴素贝叶斯算法就是里面贝叶斯算法中最简单的一个算法。为什么叫做朴素贝叶斯,因为他里面的各个类条件是独立的,所以一会在后面的计算中会起到很多方便的作用。
注:朴素的意思是条件概率独立性
朴素贝叶斯的思想是这样的:
如果一个事物在一些属性条件发生的情况下,事物属于A的概率>属于B的概率,则判定事物属于A
通俗的来说比如,你在街上看到一个黑人,我让你猜这人哪里来的,你很有可能猜来自非洲。为什么呢?
在你的脑海中,有这么一个判断流程:
1.这个人的皮肤是黑色 <特征>
2.黑色人种是非洲人的概率最高<条件概率:黑色条件下是非洲人的概率>
3.没有其它辅助信息的情况下,最好的判断就是非洲人
这就是朴素贝叶斯的思想基础。
1.分解各类先验样本数据中的特征
2.计算各类数据中,各特征的条件概率
(比如:特征1出现的情况下,属于A类的概率p(A|特征1),属于B类的概率p(B|特征1),属于C类的概率(C|特征1)…)
3.分解待分类数据中的特征(特征1,特征2,特征3,特征4…)
4、计算各特征的各条件概率的乘积,如下所示:
判断为A类的概率:p(A|特征1)*p(A|特征2)*p(A|特征3)*p(A|特征4)…
判断为B类的概率:p(B|特征1)*p(B|特征2)*p(B|特征3)*p(B|特征4)…
判断为C类的概率:p(C|特征1)*p(C|特征2)*p(C|特征3)*p(C|特征4)…
…
5、结果中的最大值就是该样本所属的类别
from numpy import *
def loadDataSet():
postingList = [[‘my’,‘dog’,‘has’,‘flea’,‘problems’,‘help’,‘please’],
[‘maybe’,‘not’,‘take’,‘him’,‘to’,‘dog’,‘park’,‘stupid’],
[‘my’,‘dalmation’,‘is’,‘so’,‘cute’,‘I’,‘love’,‘him’],
[‘stop’,‘posting’,‘stupid’,‘worthless’,‘garbage’],
[‘mr’,‘licks’,‘ate’,‘my’,‘steak’,‘how’,‘to’,‘stop’,‘him’],
[‘quit’,‘buying’,‘worthless’,‘dog’,‘food’,‘stupid’]]
classVec = [0,1,0,1,0,1]
return postingList, classVec
def createVocabList(dataSet):
vocabSet = set([]) # 创建一个空集
for document in dataSet:
vocabSet = vocabSet | set(document) # 创建两个集合的并集
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList) # 创建一个其中所含元素都为0的向量
for word in inputSet:
if word in vocabList:
# returnVec[vocabList.index(word)] = 1 # index函数在字符串里找到字符第一次出现的位置 词集模型
returnVec[vocabList.index(word)] += 1 # 文档的词袋模型 每个单词可以出现多次
else: print (“the word: %s is not in my Vocabulary!” % word)
return returnVec
def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
# p0Num = zeros(numWords); p1Num = zeros(numWords)
# p0Denom = 0.0; p1Denom = 0.0
p0Num = ones(numWords); # 避免一个概率值为0,最后的乘积也为0
p1Num = ones(numWords); # 用来统计两类数据中,各词的词频
p0Denom = 2.0; # 用于统计0类中的总数
p1Denom = 2.0 # 用于统计1类中的总数
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# p1Vect = p1Num / p1Denom
# p0Vect = p0Num / p0Denom
p1Vect = log(p1Num / p1Denom) # 在类1中,每个次的发生概率
p0Vect = log(p0Num / p0Denom) # 避免下溢出或者浮点数舍入导致的错误 下溢出是由太多很小的数相乘得到的
return p0Vect, p1Vect, pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classifyp1Vec) + log(pClass1)
p0 = sum(vec2Classifyp0Vec) + log(1.0-pClass1)
if p1 > p0:
return 1
else:
return 0
def testingNB():
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
testEntry = [‘love’,‘my’,‘dalmation’,]
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
testEntry = [‘stupid’]
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
testingNB()