图解大数据 | 海量数据库查询-Hive与HBase详解

Python微信订餐小程序课程视频

https://edu.csdn.net/course/detail/36074

Python实战量化交易理财系统

https://edu.csdn.net/course/detail/35475

作者:韩信子@ShowMeAI
教程地址:http://www.showmeai.tech/tutorials/84
本文地址:http://www.showmeai.tech/article-detail/172
声明:版权所有,转载请联系平台与作者并注明出处

1.大数据与数据库

1) 从Hadoop到数据库

大家知道在计算机领域,关系数据库大量用于数据存储和维护的场景。大数据的出现后,很多公司转而选择像 Hadoop/Spark 的大数据解决方案。

Hadoop使用分布式文件系统,用于存储大数据,并使用MapReduce来处理。Hadoop擅长于存储各种格式的庞大的数据,任意的格式甚至非结构化的处理。

2) Hadoop的限制

Hadoop非常适合批量处理任务,但它只以顺序方式访问数据。这意味着如果要查询,必须搜索整个数据集,即使是最简单的搜索工作。

当处理结果在另一个庞大的数据集,也是按顺序处理一个巨大的数据集。在这一点上,一个新的解决方案,需要访问数据中的任何点(随机访问)单元。

3) HBase与大数据数据库、

HBase是建立在Hadoop文件系统之上的分布式面向列的数据库

HBase是一个数据模型,类似于谷歌的Bigtable设计,可以提供快速随机访问海量结构化数据。它利用了Hadoop的文件系统(HDFS)提供的容错能力。

它是Hadoop的生态系统,提供对数据的随机实时读/写访问,是Hadoop文件系统的一部分。我们可以直接或通过HBase的存储HDFS数据。使用HBase在HDFS读取消费/随机访问数据。 HBase在Hadoop的文件系统之上,并提供了读写访问。

2.BigTable与HBase

要提到HBase,就要顺带提到google的BigtableHBase是在谷歌BigTable的基础之上进行开源实现的,是一个高可靠、高性能、面向列、可伸缩的分布式数据库,可以用来存储非结构化和半结构化的稀疏数据。

1) 结构化数据和非结构化数据

BigTable和HBase存储的都是非结构化数据。

图解大数据 | 海量数据库查询-Hive与HBase详解_第1张图片

2) BigTable简介

BigTable是一个用于管理结构化数据的分布式存储系统,构建在GFS、Chubby、SSTable等google技术之上。本质上说,BigTable是一个稀疏的、分布式的、持久化的、多维的、排序的键值(key-value)映射。

图解大数据 | 海量数据库查询-Hive与HBase详解_第2张图片

3) HBase简介

  • HBase是一个高可靠、高性能、面向列、可伸缩的分布式数据库,是谷歌BigTable的开源实现。
  • HBase主要用来存储非结构化和半结构化的松散数据,目标是处理非常庞大的表,可以通过水平扩展的方式,利用廉价计算机集群处理由超过10亿行数据和数百万列元素组成的数据表。

图解大数据 | 海量数据库查询-Hive与HBase详解_第3张图片

4) HBase在大数据生态环境中的位置

HBase在大数据生态环境中的位置如下图所示,它建立在Hadoop HDFS之上的分布式面向列的数据库。

图解大数据 | 海量数据库查询-Hive与HBase详解_第4张图片

5) HBase的特点

如下图所示,HBase有以下特点:

图解大数据 | 海量数据库查询-Hive与HBase详解_第5张图片

  • :一个表可以有上亿行,上百万列。
  • 面向列:面向列表(簇)的存储和权限控制,列(簇)独立检索。
  • 稀疏:对于为空(NULL)的列,并不占用存储空间,因此,表可以设计的非常稀疏。
  • 无模式:每一行都有一个可以排序的主键和任意多的列,列可以根据需要动态增加,同一张表中不同的行可以有截然不同的列。
  • 数据多版本:每个单元的数据有多个版本,默认情况下,版本号是单元格插入时的时间戳。
  • 数据类型单一:HBase中的数据都是字符串,没有类型。

6) HBase的访问接口

类型 特点 场合
Native Java API 最常规和高效的访问方式 适合Hadoop MapReduce作业并行批处理HBase表数据
HBase Shell HBase的命令行工具 最简单的接口 适合HBase管理使用
Thrift Gateway 利用Thrift序列化技术 支持C++、PHP、Python等 适合其他异构系统在线访问HBase表数据
REST Gateway 解除了语言限制 支持REST风格的Http API访问HBase
Pig 使用Pig Latin流式编程语言来处理HBase中的数据 适合做数据统计
Hive 简单 当需要以类似SQL语言方式来访问HBase的时候

3.HBase数据模型

1) 逻辑存储模型

组件 描述
表 Table HBase采用表来组织数据,表由行和列组成,列划分为若干个列族
行 Row 每个HBase表都由若干行组成,每个行由行键(row key)来标识
列族 Column Family 一个HBase表被分组成许多“列族”(Column Family)的集合
列限定符Column Qualifier 列族里的数据通过列限定符(或列)来定位
单元格 Cell 通过行、列族和列限定符确定一个单元格,单元格中存储的数据都视为byte
时间戳 Times tamp 同一份数据的多个版本,时间戳用于索引数据版本

HBase中需要根据行键、列族、列限定符和时间戳来确定一个单元格。因此,可以视为一个“四维坐标”,即 [行键, 列族, 列限定符, 时间戳]

图解大数据 | 海量数据库查询-Hive与HBase详解_第6张图片

2) 物理存储模型

Table在行的方向上分割为多个Region,每个Region分散在不同的RegionServer中。

图解大数据 | 海量数据库查询-Hive与HBase详解_第7张图片

每个HRegion由多个Store构成,每个Store由一个MemStore和0或多个StoreFile组成,每个Store保存一个Columns Family。StoreFile以HFile格式存储在HDFS中。

图解大数据 | 海量数据库查询-Hive与HBase详解_第8张图片

4.HBase系统架构

1) HBase架构组件

HBase包含以下三个组件:

  • Region Server:提供数据的读写服务,当客户端访问数据时,直接和Region Server通信。
  • HBase Master:Region的分配,DDL操作(创建表,删除表)。
  • ZooKeeper:是HDFS的一部分,维护一个活跃的集群状态。

图解大数据 | 海量数据库查询-Hive与HBase详解_第9张图片

2) Region组件

HBase Tables 通过行健的范围(row key range)被水平切分成多个Region。一个Region包含了所有的在Region开始键(startKey)和结束键(endKey)之内的行。
Regions被分配到集群的节点上,成为Region Servers,提供数据的读写服务;一个Region Server可以服务1000个Region。

图解大数据 | 海量数据库查询-Hive与HBase详解_第10张图片

3) HMaster组件

图解大数据 | 海量数据库查询-Hive与HBase详解_第11张图片

  • 分配Region,DDL操作(创建表, 删除表)。
  • 协调各个Reion Server:在启动时分配Region、在恢复或是负载均衡时重新分配Region;监控所有集群当中的Region Server实例,从ZooKeeper中监听通知。
  • 提供创建、删除、更新表的接口。

4) ZooKeeper组件

图解大数据 | 海量数据库查询-Hive与HBase详解_第12张图片

  • HBase使用ZooKeeper作为分布式协调服务,来维护集群中的Server状态。
  • ZooKeeper维护着哪些Server是活跃或是可用的,提供Server 失败时的通知。
  • Zookeeper使用一致性机制来保证公共的共享状态,注意,需要使用奇数的三台或五台机器,保证一致。

5.Hive介绍

1) Hive简介

Hive是基于Hadoop的一个数据仓库工具,用于结构化数据的查询、分析和汇总。Hive提供类SQL查询功能,它将SQL转换为MapReduce程序。

Hive不支持OLTP,Hive无法提供实时查询。

2) Hive在大数据生态环境中的位置

图解大数据 | 海量数据库查询-Hive与HBase详解_第13张图片

3) Hive特点

Hive的优点

  • 简单容易上手:提供了类SQL查询语言HQL。
  • 可扩展:一般情况下不需要重启服务Hive可以自由的扩展集群的规模。
  • 提供统一的元数据管理。
  • 延展性:Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
  • 容错:良好的容错性,节点出现问题SQL仍可完成执行。

图解大数据 | 海量数据库查询-Hive与HBase详解_第14张图片

Hive的缺点(局限性)

  • Hive的HQL表达能力有限:迭代式算法无法表达,比如pagerank;数据挖掘方面,比如kmeans。
  • Hive的效率比较低:Hive自动生成的MapReduce作业,不够智能化;Hive调优比较困难,粒度较粗;Hive可控性差。

4) Hive与传统数据库对比

图解大数据 | 海量数据库查询-Hive与HBase详解_第15张图片

5) Hive的体系架构

图解大数据 | 海量数据库查询-Hive与HBase详解_第16张图片

  • client 三种访问方式:CLI、JDBC/ODBC、WEBUI。
  • Meta store 元数据:表名、表所属数据库、表拥有者、列、分区字段、表类型、表数据所在的目录等,默认存储在自带的derby数据库中。
  • Driver:解析器、编译器、优化器、执行器。

6) Hive中的数据模型

图解大数据 | 海量数据库查询-Hive与HBase详解_第17张图片

Hive 中所有的数据都存储在 HDFS 中Hive 中包含以下数据模型:

  • 表(Table)
  • 外部表(External Table)
  • 分区(Partition)
  • 桶(Bucket)

6.SQL介绍与Hive应用场景

1) 数据库操作和表操作

作用 HiveQL
查看所有数据库 SHOW DATABASES;
使用指定的数据库 USE database_name;
创建指定名称的数据库 CREATE DATABASE database_name;
删除数据库 DROP DATABASE database_name;
创建表 CREATE TABLE pokes (foo INT, bar STRING)
查看所有的表 SHOW TABLES
支持模糊查询 SHOW TABLES ‘TMP’
查看表有哪些分区 SHOW PARTITIONS TMP_TABLE
查看表结构 DESCRIBE TMP_TABLE
创建表并创建索引ds CREATE TABLE invites (foo INT, bar STRING) PARTITIONED BY (ds STRING)
复制一个空表 CREATE TABLE empty_key_value_store LIKE key_value_store
表添加一列 ALTER TABLE pokes ADD COLUMNS (new_col INT)
更改表名 ALTER TABLE events RENAME TO 3koobecaf

2) 查询语句

作用 HiveQL
检索信息 SELECT from_columns FROM table WHERE conditions;
选择所有的数据 SELECT * FROM table;
行筛选 SELECT * FROM table WHERE rec_name = “value”;
多个限制条件 SELECT * FROM TABLE WHERE rec1 = “value1” AND rec2 = “value2”;
选择多个特定的列 SELECT column_name FROM table;
检索unique输出记录 SELECT DISTINCT column_name FROM table;
排序 SELECT col1, col2 FROM table ORDER BY col2;
逆序 SELECT col1, col2 FROM table ORDER BY col2 DESC;
统计行数 SELECT COUNT(*) FROM table;
分组统计 SELECT owner, COUNT(*) FROM table GROUP BY owner;
求某一列最大值 SELECT MAX(col_name) AS label FROM table;
从多个表中检索信息 SELECT pet.name, comment FROM pet JOIN event ON (pet.name = event.name);

3) Hive的应用场景

Hive并不适合需要低延迟的应用,适合于大数据集的批处理作业:

  • 日志分析:大部分互联网公司使用hive进行日志分析,包括百度、淘宝等。例如,统计网站一个时间段内的pv、uv,多维度数据分析等。
  • 海量结构化数据离线分析。

4) Hive和HBase的区别与联系

图解大数据 | 海量数据库查询-Hive与HBase详解_第18张图片

7.参考资料

  • Lars George 著,代志远 / 刘佳 / 蒋杰 译,《 HBase权威指南》,东南大学出版社,2012
  • Edward Capriolo / Dean Wampler)/ Jason Rutherglen 著,曹坤 译,《Hive编程指南》,人民邮电出版社,2013
  • 深入了解HBase架构: https://blog.csdn.net/Lic_LiveTime/article/details/79818695
  • APACHE HIVE TM:http://hive.apache.org/
  • Apache HBase ™ Reference Guide:http://hbase.apache.org/book.html

ShowMeAI相关文章推荐

  • 图解大数据 | 导论:大数据生态与应用
  • 图解大数据 | 分布式平台:Hadoop与Map-reduce详解
  • 图解大数据 | 实操案例:Hadoop系统搭建与环境配置
  • 图解大数据 | 实操案例:应用map-reduce进行大数据统计
  • 图解大数据 | 实操案例:Hive搭建与应用案例
  • 图解大数据 | 海量数据库与查询:Hive与HBase详解
  • 图解大数据 | 大数据分析挖掘框架:Spark初步
  • 图解大数据 | Spark操作:基于RDD的大数据处理分析
  • 图解大数据 | Spark操作:基于Dataframe与SQL的大数据处理分析
  • 图解大数据 | 综合案例:使用spark分析美国新冠肺炎疫情数据
  • 图解大数据 | 综合案例:使用Spark分析挖掘零售交易数据
  • 图解大数据 | 综合案例:使用Spark分析挖掘音乐专辑数据
  • 图解大数据 | 流式数据处理:Spark Streaming
  • 图解大数据 | Spark机器学习(上)-工作流与特征工程
  • 图解大数据 | Spark机器学习(下)-建模与超参调优
  • 图解大数据 | Spark GraphFrames:基于图的数据分析挖掘

ShowMeAI系列教程推荐

  • 图解Python编程:从入门到精通系列教程
  • 图解数据分析:从入门到精通系列教程
  • 图解AI数学基础:从入门到精通系列教程
  • 图解大数据技术:从入门到精通系列教程

图解大数据 | 海量数据库查询-Hive与HBase详解_第19张图片

你可能感兴趣的:(android,big,data,hbase,数据库,计算机)