【深度学习】Softmax回归(二)Python从零开始实现

文章目录

    • 概述
    • 实现步骤
      • 导入需要的包
      • 读取数据
      • 初始化参数
      • 实现softmax运算
      • 定义Softmax模型
      • 定义损失函数
      • 计算准确率
      • 对模型进行训练
      • 进行测试
    • 完整代码和实验结果
    • 备注

概述

本文不使用深度学习框架来构建Softmax模型,从零开始实现Softmax回归,并使用Fashion-MNIXT数据集进行了实验。本文需要的前导知识可参考我之前的几篇博客:

  • MXNET框架中NDArray的基本操作:【深度学习】MXNet基本数据结构NDArray常用操作
  • MXNET求解梯度:【深度学习】MXNet自动求解函数梯度
  • Softmax的原理:【深度学习】Softmax回归(一)概念和原理
  • 利用MXNET操作Fashion-MNIST数据集:【深度学习】Fashion-MNIST数据集简介

实现步骤

导入需要的包

import gluonbook as gb
from mxnet import autograd, nd

关于gluonbook包,可参考博文【深度学习】Fashion-MNIST数据集简介的末尾给出的介绍。

读取数据

# 小批量读取Fashion-MNIST数据集
batch_size = 256
train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)

初始化参数

# 输入为28*28=784维向量,输出为10个类别
num_inputs = 784
num_outputs = 10

# 设置softmax回归中的参数矩阵
W = nd.random.normal(scale=0.01, shape=(num_inputs, num_outputs))
W.attach_grad()
b = nd.zeros(num_outputs)
b.attach_grad()

实现softmax运算

# 定义softmax运算:X行数等于样本数,列数为输出个数
def softmax(X):
    # 先对每个元素做指数运算
    X_exp = X.exp()
    # 求指数矩阵每行的和
    partition = X_exp.sum(axis=1, keepdims=True)
    # 返回
    return X_exp/partition

定义Softmax模型

# 定义softmax模型
def net(X):
    # reshape将28*28矩阵改为784维输入向量
    return softmax(nd.dot(X.reshape((-1, num_inputs)), W) + b)

定义损失函数

# 定义损失函数
def cross_entropy(y_prediction, y):
    return - (nd.pick(y_prediction, y).log())

计算准确率

# 对比预测值和标签值,计算准确率
def accuracy(y_prediction, y):
    return (y_prediction.argmax(axis=1) == y.astype('float32')).mean().asscalar()


# 计算所有批次的平均准确率
def evaluate_accuracy(data_iter, net):
    acc = 0
    for X, y in data_iter:
        acc += accuracy(net(X), y)
    return acc/len(data_iter)

对模型进行训练

# 训练
def train(net, train_iter, test_iter, loss, epochs, batch_size, params=None, lr=None, trainer=None):
    for epoch in range(epochs):
        # 总的损失
        train_loss_sum = 0
        # 总的准确率
        train_acc_sum = 0
        for X, y in train_iter:
            with autograd.record():
                y_pre = net(X)
                los = loss(y_pre, y)
            # 求梯度
            los.backward()
            if trainer is None:
                # 小批量随机梯度下降
                gb.sgd(params, lr, batch_size)
            else:
                trainer.step(batch_size)
            train_loss_sum += los.mean().asscalar()
            train_acc_sum += accuracy(y_pre, y)
        print('epoch %d, loss %.4f, train acc %.3f'% (epoch + 1, train_loss_sum / len(train_iter), train_acc_sum / len(train_iter)))

进行测试

# 利用测试集做测试,得出准确率
test_acc = evaluate_accuracy(test_iter, net)
print("Training done, test accuracy is: ", test_acc)

完整代码和实验结果

# coding=utf-8
# author: BebDong
# 2018/12/18
# 从0开始实现softmax回归

import gluonbook as gb
from mxnet import autograd, nd


# 定义softmax运算:X行数等于样本数,列数为输出个数
def softmax(X):
    # 先对每个元素做指数运算
    X_exp = X.exp()
    # 求指数矩阵每行的和
    partition = X_exp.sum(axis=1, keepdims=True)
    # 返回
    return X_exp/partition


# 定义softmax模型
def net(X):
    # reshape将28*28矩阵改为784维输入向量
    return softmax(nd.dot(X.reshape((-1, num_inputs)), W) + b)


# 定义损失函数
def cross_entropy(y_prediction, y):
    return - (nd.pick(y_prediction, y).log())


# 对比预测值和标签值,计算准确率
def accuracy(y_prediction, y):
    return (y_prediction.argmax(axis=1) == y.astype('float32')).mean().asscalar()


# 计算所有批次的平均准确率
def evaluate_accuracy(data_iter, net):
    acc = 0
    for X, y in data_iter:
        acc += accuracy(net(X), y)
    return acc/len(data_iter)


# 训练
def train(net, train_iter, test_iter, loss, epochs, batch_size, params=None, lr=None, trainer=None):
    for epoch in range(epochs):
        # 总的损失
        train_loss_sum = 0
        # 总的准确率
        train_acc_sum = 0
        for X, y in train_iter:
            with autograd.record():
                y_pre = net(X)
                los = loss(y_pre, y)
            # 求梯度
            los.backward()
            if trainer is None:
                # 小批量随机梯度下降
                gb.sgd(params, lr, batch_size)
            else:
                trainer.step(batch_size)
            train_loss_sum += los.mean().asscalar()
            train_acc_sum += accuracy(y_pre, y)
        print('epoch %d, loss %.4f, train acc %.3f'% (epoch + 1, train_loss_sum / len(train_iter), train_acc_sum / len(train_iter)))


# 小批量读取Fashion-MNIST数据集
batch_size = 256
train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)

# 输入为28*28=784维向量,输出为10个类别
num_inputs = 784
num_outputs = 10

# 设置softmax回归中的参数矩阵
W = nd.random.normal(scale=0.01, shape=(num_inputs, num_outputs))
W.attach_grad()
b = nd.zeros(num_outputs)
b.attach_grad()

# 训练模型
epochs, lr = 10, 0.1
train(net, train_iter, test_iter, cross_entropy, epochs, batch_size, [W, b], lr)

# 利用测试集做测试,得出准确率
test_acc = evaluate_accuracy(test_iter, net)
print("Training done, test accuracy is: ", test_acc)

我运行的实验结果如下:
【深度学习】Softmax回归(二)Python从零开始实现_第1张图片

备注

本文为《动手学深度学习》的学习笔记,原书链接:http://zh.diveintodeeplearning.org/chapter_deep-learning-basics/softmax-regression-scratch.html

代码中的gluonbook包是这本书籍封装的工具包,它把书中描述的将来会复用的所有方法进行了封装。如果您并未按照书中给出的配置文件搭建环境,那可以点击这里单独下载gluonbook包,并将其移动至恰当的位置。

最后,如果带实现的代码有任何疑问,欢迎交流!

你可能感兴趣的:(人工智能,《动手学深度学习》,Softmax回归,python,Softmax回归)