- DETR革命:目标检测的Transformer时代
加油吧zkf
目标检测YOLOpython开发语言人工智能图像处理
《DETR从0到1:目标检测Transformer的崛起》为什么会有DETR?在深度学习目标检测发展史上,2014~2019年几乎被基于卷积神经网络(CNN)的检测器统治:两阶段:FasterR-CNN、MaskR-CNN单阶段:YOLO、SSD、RetinaNet这些检测器虽然效果强大,但背后依赖:✅Anchor(先验框)✅NMS(非极大值抑制)✅特征金字塔、手工设计问题:结构复杂、调参困难、不
- 基于NanoDet的健身姿势纠正系统开发
YOLO实战营
人工智能NanoDet深度学习计算机视觉ui
1.引言在现代健身行业中,正确的运动姿势至关重要,不仅能提升训练效果,还能预防运动损伤。尤其是在进行一些高强度的力量训练时,如深蹲、俯卧撑等,错误的姿势可能导致肌肉不平衡或关节损伤。传统的健身姿势纠正方式依赖教练的人工指导,但随着人工智能技术的发展,使用计算机视觉和深度学习技术来进行姿势纠正,逐渐成为一种高效且可扩展的解决方案。本文将详细介绍如何基于NanoDet(一个轻量化目标检测模型)开发一个
- BEV+Transformer
Monkey PilotX
自动驾驶transformer深度学习人工智能
在自动驾驶系统中,BEV(Bird’sEyeView)+Transformer主要应用于感知与环境建图(Perception&SceneUnderstanding)环节,尤其是在多传感器融合、目标检测、语义分割、轨迹预测等任务中。在自动驾驶中的关键应用场景应用环节BEV+Transformer的作用感知(Perception)多摄像头图像融合成BEV视角,进行目标检测、语义分割预测(Predict
- 目标检测中的标签分配算法总结
北京地铁1号线
目标检测与图像处理人工智能
目标检测中的标签分配算法是训练过程中的一个核心环节,它决定了如何将标注好的真实目标框分配给模型预测出来的候选框(AnchorBoxes或Points),从而为这些候选框提供监督信号(正样本、负样本、忽略样本)。它的质量直接影响模型的学习效率和最终性能。简单来说,标签分配要解决的关键问题是:“哪些预测框应该负责学习哪些真实目标?”一、为什么标签分配如此重要?1.定义学习目标:它直接告诉模型哪些预测应
- 《目标检测模块实践手册:从原理到落地的尝试与分享》第一期
加油吧zkf
目标检测模块解析与实践目标检测目标跟踪人工智能
大家好,欢迎来到《目标检测模块实践手册》系列的第一篇。从今天开始,我想以一种“实践记录者”的身份,和大家聊聊在目标检测任务中那些形形色色的模块。这些内容没有权威结论,更多的是我在实际操作中的一些尝试、发现和踩过的坑。至于这些模块在大家的具体网络应用中是否可行,还需要大家自己去验证,也非常期待能和大家交流不同的经验。目标检测任务的本质与模块的作用目标检测,简单来说,就是从输入的图像中,准确地找出我们
- 手绘电路图的节点和端点检测一个简化版的算法实现框架
zhangfeng1133
算法
于论文描述,我将提供一个简化版的算法实现框架,用于手绘电路图的节点和端点检测,并整合生成电路原理图。以下代码结合了YOLOv5目标检测和传统图像处理技术,符合论文中提到的98.2%mAP和92%节点识别准确率的关键指标。核心算法实现(Python+OpenCV+YOLOv5)importcv2importnumpyasnpimporttorchfromyolov5importYOLOv5#需要安装
- 目标检测-YOLOv5
wydxry
深度学习目标检测YOLO人工智能深度学习
YOLOv5介绍YOLOv5是YOLO系列的第五个版本,由Ultralytics团队发布。虽然YOLOv5并非JosephRedmon原团队发布,但它在YOLOv4的基础上进行了重要的优化和改进,成为了深度学习目标检测领域中的热门模型之一。YOLOv5的优势不仅体现在其性能上,还包括其简洁易用、部署便捷的特点。相较于YOLOv4,YOLOv5对于代码框架的重构、推理速度的提升,以及模型的轻量化等方
- 深度学习模型开发部署全流程:以YOLOv11目标检测任务为例
你喜欢喝可乐吗?
deeplearningdeploy深度学习YOLO目标检测
深度学习模型开发部署全流程:以YOLOv11目标检测任务为例深度学习模型从开发到部署的完整流程包含需求分析、数据准备、模型训练、模型优化、模型测试和部署运行六大核心环节。YOLOv11作为新一代目标检测模型,不仅延续了YOLO系列的高效实时性能,还在检测精度和泛化能力上取得显著突破,使其成为工业质检、安防监控、自动驾驶等领域的理想选择。本文将详细阐述这一完整流程,并结合YOLOv11的具体实现,提
- 渣土车识别漏检率高?陌讯算法实测降 90%
2501_92487936
目标跟踪人工智能计算机视觉目标检测算法智慧城市
在城市建筑垃圾运输管理中,渣土车的合规性监测一直是行业痛点。传统视觉算法在复杂工况下常常出现误判——阴雨天车牌识别模糊、夜间车灯眩光导致车型误分类、不同品牌渣土车混检时准确率骤降。某市政管理局的统计显示,采用传统方案时,日均漏检率高达23%,由此引发的违规倾倒投诉占比超60%。技术解析:从单模态到多特征融合的突破传统渣土车识别多依赖单一目标检测模型(如FasterR-CNN),其核心缺陷在于:特征
- 考场/工厂违规用机难捕捉?3维度优化方案部署成本直降40%
2501_92487762
视觉检测计算机视觉算法目标检测
开篇痛点工业场景中传统玩手机识别面临三重挑战:小目标检测(手机平均像素占比<0.5%)、遮挡干扰(人手/物体遮挡率超60%)、实时性要求(需200ms内响应)。某安检企业反馈,开源YOLOv5在车间场景误报率高达34%。技术解析:双流特征融合架构陌讯算法创新性融合双路径特征(图1):#陌讯核心代码逻辑(简化版)defdual_path_fusion(backbone):shallow_path=C
- 复杂场景检测失效?陌讯多模态算法在千万级监控网的落地实战
2501_92473061
算法视觉检测安全计算机视觉
开篇痛点:安防监控的检测困境"明明人就在画面里,系统却毫无反应!"——这是某智慧园区安防负责人的吐槽。传统目标检测模型在安防监控场景面临三大死穴:漏报:夜间、遮挡场景下召回率骤降(实测ResNet50漏报率>40%)误报:树叶晃动、光影变化引发的误报占比超35%延迟:1080P视频流检测延迟普遍>100ms,难以满足实时响应需求技术解析:陌讯算法的三阶优化架构陌讯视觉算法采用多模态特征金字塔(MM
- 复杂场景检测老翻车?陌讯算法实测提升 40%
2501_92453489
算法视觉计算机视觉视觉检测
在工业质检、安防监控等计算机视觉落地场景中,工程师常面临棘手问题:传统算法在光照突变、目标遮挡等复杂环境下,漏检率高达20%以上,泛化能力不足成为项目落地的最大阻碍。而陌讯AI视觉算法通过架构创新,正在重新定义复杂场景下的检测精度标准。技术解析:从单模态到多模态的跨越传统目标检测模型多依赖单一RGB图像输入,在特征提取阶段容易受环境干扰。以经典的FasterR-CNN为例,其区域提议网络(RPN)
- 微算法科技研究量子视觉计算,利用量子力学原理提升传统计算机视觉任务的性能
计算机视觉,作为人工智能领域的一个重要分支,致力于模拟人类视觉系统对图像或视频等视觉数据的理解与分析能力。它涵盖了图像识别、目标检测、图像分割等一系列复杂任务,广泛应用于自动驾驶、医疗影像分析、安防监控等多个领域。然而,随着数据规模的不断膨胀和任务复杂度的日益提升,传统计算机视觉算法在处理大规模、高维度数据时遇到了性能瓶颈。微算法科技(NASDAQ:MLGO)研究量子视觉计算,探索量子计算与经典卷
- PyTorch & TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)
阿牛的药铺
算法移植部署pytorchtensorflowfpga开发
PyTorch&TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)引言:为什么算法移植工程师必须掌握框架基础?针对光学类产品算法FPGA移植岗位需求(如可见光/红外图像处理),深度学习框架是算法落地的"桥梁"——既要用PyTorch/TensorFlow验证算法可行性,又要将训练好的模型(如CNN、目标检测)转换为FPGA可部署的格式(ONNX、TFLite)。本文采用"
- 【目标检测】机场内部目标检测数据集4106张YOLO+VOC格式
数据集格式:VOC格式+YOLO格式压缩包内含:3个文件夹,分别存储图片、xml、txt文件JPEGImages文件夹中jpg图片总计:4106Annotations文件夹中xml文件总计:4106labels文件夹中txt文件总计:4106标签种类数:7标签名称:["Ground_vehicles","Horizontal_sign","Runaway_limit","Taxiway","Ver
- 传统检测响应慢?陌讯多模态引擎提速90+FPS实战
2501_92473147
算法计算机视觉目标检测
开篇痛点:实时目标检测在安防监控中的核心挑战在安防监控领域,实时目标检测是保障公共安全的关键技术。然而,传统算法如YOLOv5或开源框架MMDetection常面临两大痛点:误报率高(复杂光照或遮挡场景下检测不稳定)和响应延迟(高分辨率视频流处理FPS低于30)。实测数据显示,城市交通监控系统误报率达15%,导致安保资源浪费;客户反馈表明,延迟超100ms时,目标跟踪可能失效。这些问题源于算法泛化
- 目标检测(object detection)
加油吧zkf
目标检测目标检测人工智能计算机视觉
目标检测作为计算机视觉的核心技术,在自动驾驶、安防监控、医疗影像等领域发挥着不可替代的作用。本文将系统讲解目标检测的概念、原理、主流模型、常见数据集及应用场景,帮助读者构建对这一技术的完整认知。一、目标检测的核心概念目标检测(ObjectDetection)是指在图像或视频中自动定位并识别出所有感兴趣的目标的技术。它需要解决两个核心问题:分类(Classification):确定图像中每个目标的类
- 目标检测中的NMS算法详解
好的,我们来详细解释一下目标检测中非极大值抑制(Non-MaximumSuppression,NMS)的相关概念和计算过程。1.为什么需要NMS?问题:目标检测模型(如FasterR-CNN,YOLO,SSD等)在推理时,对于同一个目标物体,通常会预测出多个重叠的、不同置信度(confidencescore)的候选边界框(BoundingBoxes)。直接输出所有这些框会导致:结果冗余:同一个物体
- YOLOv11 技术详解:架构优化与性能提升
代码老y
YOLO架构目标跟踪
YOLOv11是目标检测领域中一个备受瞩目的新版本,它在保持实时性的同时,显著提升了检测的准确性和效率。本文将深入探讨YOLOv11的架构改进、性能优化以及它在不同应用场景中的表现。一、架构改进(一)C3K2块YOLOv11引入了C3K2块,这是对之前版本中CSP(CrossStagePartial)块的增强。C3K2块使用不同的核大小(例如3x3或5x5)和通道分离策略来优化更复杂特征的提取。这
- YOLO11 目标检测从安装到实战
前言YOLO(YouOnlyLookOnce)系列是目标检测领域的经典算法,凭借速度快、精度高的特点被广泛应用。最新的YOLO11在模型结构和性能上进一步优化,本文将从环境搭建到实战应用,详细讲解YOLO11的使用方法,适合新手快速上手。一、环境准备1.系统要求操作系统:Windows10/11、Ubuntu20.04+、欧拉系统等硬件:CPU可运行,GPU(NVIDIA)可加速(推荐,需支持CU
- OpenCV入门到精通:AI视觉处理的完整指南
AI云原生与云计算技术学院
人工智能opencv计算机视觉ai
OpenCV入门到精通:AI视觉处理的完整指南关键词:OpenCV、计算机视觉、图像预处理、目标检测、AI视觉应用摘要:本文是一份面向AI视觉爱好者的OpenCV完整学习指南。从OpenCV的核心概念讲起,结合生活案例、代码示例和项目实战,逐步拆解图像读取/显示、灰度化、边缘检测、目标检测等关键技术。无论你是想入门计算机视觉的新手,还是希望用OpenCV解决实际问题的开发者,都能通过本文掌握从理论
- 目前主流图像分类模型的详细对比分析
@comefly
闲聊linux运维服务器
以下是目前主流图像分类模型的详细对比分析,结合性能、架构特点及应用场景进行整理:一、主流模型架构分类与定量对比模型名称架构类型核心特点ImageNetTop-1准确率参数量(百万)计算效率典型应用场景ResNetCNN残差连接解决梯度消失,支持超深网络(如ResNet-152)76.1%25.6中等通用分类、目标检测ViTTransformer将图像分割为patches,用标准Transforme
- 目标检测之数据增强
数据翻转,需要把bbox相应的坐标值也进行交换代码:importrandomfromtorchvision.transformsimportfunctionalasFclassCompose(object):"""组合多个transform函数"""def__init__(self,transforms):self.transforms=transformsdef__call__(self,ima
- 模型实战(21)之 C++ - tensorRT部署yolov8-det 目标检测
明月醉窗台
#深度学习实战例程人工智能c++YOLO目标检测计算机视觉人工智能
C++-tensorRT部署yolov8-det目标检测python环境下如何直接调用推理模型转换并导出:pt->onnx->.engineC++tensorrt部署检测模型不写废话了,直接上具体实现过程+all代码1.Python环境下推理直接命令行推理,巨简单yolodetectpredictmodel=yolov8n.ptsource='https
- 【零基础学AI】第31讲:目标检测 - YOLO算法
1989
0基础学AI人工智能目标检测YOLOrnnlstmtensorflow
本节课你将学到YOLO算法的核心思想和工作原理如何使用YOLO进行物体检测构建一个简单的物体检测系统开始之前环境要求Python3.8+需要安装的包:opencv-python,numpy,matplotlib硬件要求:推荐使用GPU(非必须)前置知识基本Python编程能力了解卷积神经网络(CNN)的基本概念(第24讲内容)核心概念什么是目标检测?目标检测就像教计算机"看"图片中的物体。它不仅要
- 【论文阅读】【IEEE TCYB 2023】Edge-Guided Recurrent Positioning Network forSalient Object Detection in Opt
引言任务:光学遥感图像中显著目标检测论文地址:Edge-GuidedRecurrentPositioningNetworkforSalientObjectDetectioninOpticalRemoteSensingImages|IEEEJournals&Magazine|IEEEXplore代码地址:前置知识一、摘要目前由于光学rsi中目标类型多样、目标尺度多样、目标方向众多以及背景杂乱,现有S
- 如何使用目标检测深度学习框架yolov8训练钢管管道表面缺陷VOC+YOLO格式1159张3类别的检测数据集步骤和流程
FL1623863129
深度学习目标检测深度学习YOLO
【数据集介绍】数据集中有很多增强图片,大约300张为原图剩余为增强图片数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1159标注数量(xml文件个数):1159标注数量(txt文件个数):1159标注类别数:3所在仓库:firc-dataset标注类别名称(注意yo
- 万字长文详解YOLOv8 yaml 文件,结合模型输出的网络结构图分析Parameters /backbone/head以及三者的数学关联
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例之前写过一篇YOLOv8yaml配置文件逐层的解析:结合YOLOv8源码逐层解读yaml文件的配置,本文主要从整体的角度去解析yaml。YOLOv8模型YOLOv8提供了非常多的模型,详见:https:
- 万字长文带你搞懂yolov5和yolov8以及目标检测相关面试
起个别名
C++YOLO目标检测目标跟踪
一、与yoloV4相比,yoloV5的改进输入端:在模型训练阶段,使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放基准网络:使用了FOCUS结构和CSP结构Neck网络:在Backbone和最后的Head输出层之间插入FPN_PAN结构Head输出层:训练时的损失函数GIOU_Loss,预测筛选框的DIOU_nms二、yolov5网络结构预处理在模型预处理阶段,使用了Mosaic数据增强
- YOLOv11模型轻量化挑战技术文章大纲
程序猿全栈の董(董翔)
githubYOLOv11
模型轻量化的背景与意义目标检测模型YOLOv11的性能与应用场景轻量化的必要性:边缘设备部署、实时性需求、计算资源限制轻量化面临的挑战:精度与速度的权衡、模型压缩方法的选择YOLOv11的轻量化技术方向网络结构优化:深度可分离卷积、分组卷积、瓶颈设计模型剪枝:结构化剪枝与非结构化剪枝策略知识蒸馏:教师-学生模型框架与特征匹配方法量化与低比特压缩:FP16/INT8量化与二值化网络轻量化实现的具体方
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,