python opencv图像匹配_Python OpenCV学习笔记之:图像模板匹配

# -*- coding: utf-8 -*-

"""

图像模板匹配

模板匹配是在图像中寻找目标的方法之一

模板匹配的工作方式

模板匹配的工作方式跟直方图的反向投影基本一样,大致过程是这样的:通过在输入图像上滑动图像块对实际的图像块和输入图像进行匹配。

假设我们有一张100x100的输入图像,有一张10x10的模板图像,查找的过程是这样的:

(1)从输入图像的左上角(0,0)开始,切割一块(0,0)至(10,10)的临时图像;

(2)用临时图像和模板图像进行对比,对比结果记为c;

(3)对比结果c,就是结果图像(0,0)处的像素值;

(4)切割输入图像从(0,1)至(10,11)的临时图像,对比,并记录到结果图像;

(5)重复(1)~(4)步直到输入图像的右下角。

模板匹配的匹配方式

在OpenCv和EmguCv中支持以下6种对比方式:

CV_TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配;最好的匹配值为0;匹配越差,匹配值越大。

CV_TM_CCORR 相关匹配法:该方法采用乘法操作;数值越大表明匹配程度越好。

CV_TM_CCOEFF 相关系数匹配法:1表示完美的匹配;-1表示最差的匹配。

CV_TM_SQDIFF_NORMED 归一化平方差匹配法

CV_TM_CCORR_NORMED 归一化相关匹配法

CV_TM_CCOEFF_NORMED 归一化相关系数匹配法

参考:http://www.cnblogs.com/xrwang/archive/2010/02/05/MatchTemplate.html

"""

import cv2

import numpy as np

from matplotlib import pyplot as plt

img = cv2.imread('../../../datas/images/apple.jpg',0)

img2 = img.copy()

template = cv2.imread('../../../datas/images/apple-template.jpg',0)

w, h = template.shape[::-1]

methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',

'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']

for meth in methods:

img = img2.copy()

method = eval(meth)

# Apply template Matching

res = cv2.matchTemplate(img,template,method)

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum

if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:

top_left = min_loc

else:

top_left = max_loc

bottom_right = (top_left[0] + w, top_left[1] + h)

cv2.rectangle(img,top_left, bottom_right, 255, 2)

plt.figure()

plt.subplot(121),plt.imshow(res,cmap = 'gray')

plt.title('Matching Result'), plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(img,cmap = 'gray')

plt.title('Detected Point'), plt.xticks([]), plt.yticks([])

plt.suptitle(meth)

plt.show()

你可能感兴趣的:(python,opencv图像匹配)