译(四十九)-Pytorch计算模型参数量

文章首发及后续更新:https://mwhls.top/3662.html
新的更新内容请到mwhls.top查看。
无图/无目录/格式错误/更多相关请到上方的文章首发页面查看。

stackoverflow热门问题目录

如有翻译问题欢迎评论指出,谢谢。

目录
1. 计算Pytorch模型参数量
2. Check the total number of parameters in a PyTorch model

计算Pytorch模型参数量

  • Fábio Perez asked:

    • 怎么计算 Pytorch 模型的参数量?类似 Keras 的 model.count_params() 那样的函数。
  • Answers:

    • Fábio Perez – vote: 198

    • Pytorch 没有类似 Keras 计算参数量的函数,但可以通过每个参数组的求和得出参数量:

    • pytorch_total_params = sum(p.numel() for p in model.parameters())

  • 如果希望只计算可训练的参数:

  • pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
  • 参考 Pytorch 论坛回答

  • 注:这个回答是自问自答,如果你们有更好的解决方法,请分享一下。

  • Fábio Perez – vote: 46

  • 为了像 Keras 一样计算每层的参数量,Pytorch 的 model.named_paramters() 能返回一个迭代器,包含参数名与参数本身。

  • 举例说明:

  • from prettytable import PrettyTable
    #
    def count_parameters(model):
      table = PrettyTable(["Modules", "Parameters"])
      total_params = 0
      for name, parameter in model.named_parameters():
          if not parameter.requires_grad: continue
          params = parameter.numel()
          table.add_row([name, params])
          total_params+=params
      print(table)
      print(f"Total Trainable Params: {total_params}")
      return total_params
    #
    count_parameters(net)
  • 输出如下:

  • +-------------------+------------+
    |      Modules      | Parameters |
    +-------------------+------------+
    | embeddings.weight |   922866   |
    |    conv1.weight   |  1048576   |
    |     conv1.bias    |    1024    |
    |     bn1.weight    |    1024    |
    |      bn1.bias     |    1024    |
    |    conv2.weight   |  2097152   |
    |     conv2.bias    |    1024    |
    |     bn2.weight    |    1024    |
    |      bn2.bias     |    1024    |
    |    conv3.weight   |  2097152   |
    |     conv3.bias    |    1024    |
    |     bn3.weight    |    1024    |
    |      bn3.bias     |    1024    |
    |    lin1.weight    |  50331648  |
    |     lin1.bias     |    512     |
    |    lin2.weight    |   265728   |
    |     lin2.bias     |    519     |
    +-------------------+------------+
    Total Trainable Params: 56773369
  • Thong Nguyen – vote: 12

  • 如果希望避免重复计算共享的参数,可以用 torch.Tensor.data_ptr,即:

  • sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
  • 下面是更繁琐的实现,添加了一个选项,用于跳过不被训练的参数:

  • def numel(m: torch.nn.Module, only_trainable: bool = False):
      """
      returns the total number of parameters used by m (only counting
      shared parameters once); if only_trainable is True, then only
      includes parameters with requires_grad = True
      """
      parameters = list(m.parameters())
      if only_trainable:
          parameters = [p for p in parameters if p.requires_grad]
      unique = {p.data_ptr(): p for p in parameters}.values()
      return sum(p.numel() for p in unique)

  • Check the total number of parameters in a PyTorch model

    • Fábio Perez asked:

      • How to count the total number of parameters in a PyTorch model? Something similar to model.count_params() in Keras.
        怎么计算 Pytorch 模型的参数量?类似 Keras 的 model.count_params() 那样的函数。
    • Answers:

      • Fábio Perez – vote: 198

      • PyTorch doesn\’t have a function to calculate the total number of parameters as Keras does, but it\’s possible to sum the number of elements for every parameter group:
        Pytorch 没有类似 Keras 计算参数量的函数,但可以通过每个参数组的求和得出参数量:

      • pytorch_total_params = sum(p.numel() for p in model.parameters())
      • If you want to calculate only the trainable parameters:
        如果希望只计算可训练的参数:

      • pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
      • Answer inspired by this answer on PyTorch Forums.
        参考 Pytorch 论坛回答

      • Note: I\’m answering my own question. If anyone has a better solution, please share with us.
        注:这个回答是自问自答,如果你们有更好的解决方法,请分享一下。

      • Fábio Perez – vote: 46

      • To get the parameter count of each layer like Keras, PyTorch has model.named_paramters() that returns an iterator of both the parameter name and the parameter itself.
        为了像 Keras 一样计算每层的参数量,Pytorch 的 model.named_paramters() 能返回一个迭代器,包含参数名与参数本身。

      • Here is an example:
        举例说明:

      • from prettytable import PrettyTable
        #
        def count_parameters(model):
          table = PrettyTable(["Modules", "Parameters"])
          total_params = 0
          for name, parameter in model.named_parameters():
              if not parameter.requires_grad: continue
              params = parameter.numel()
              table.add_row([name, params])
              total_params+=params
          print(table)
          print(f"Total Trainable Params: {total_params}")
          return total_params
        #
        count_parameters(net)
      • The output would look something like this:
        输出如下:

      • +-------------------+------------+
        |      Modules      | Parameters |
        +-------------------+------------+
        | embeddings.weight |   922866   |
        |    conv1.weight   |  1048576   |
        |     conv1.bias    |    1024    |
        |     bn1.weight    |    1024    |
        |      bn1.bias     |    1024    |
        |    conv2.weight   |  2097152   |
        |     conv2.bias    |    1024    |
        |     bn2.weight    |    1024    |
        |      bn2.bias     |    1024    |
        |    conv3.weight   |  2097152   |
        |     conv3.bias    |    1024    |
        |     bn3.weight    |    1024    |
        |      bn3.bias     |    1024    |
        |    lin1.weight    |  50331648  |
        |     lin1.bias     |    512     |
        |    lin2.weight    |   265728   |
        |     lin2.bias     |    519     |
        +-------------------+------------+
        Total Trainable Params: 56773369
      • Thong Nguyen – vote: 12

      • If you want to avoid double counting shared parameters, you can use torch.Tensor.data_ptr. E.g.:
        如果希望避免重复计算共享的参数,可以用 torch.Tensor.data_ptr,即:

      • sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
      • Here\’s a more verbose implementation that includes an option to filter out non-trainable parameters:
        下面是更繁琐的实现,添加了一个选项,用于跳过不被训练的参数:

      • def numel(m: torch.nn.Module, only_trainable: bool = False):
          """
          returns the total number of parameters used by m (only counting
          shared parameters once); if only_trainable is True, then only
          includes parameters with requires_grad = True
          """
          parameters = list(m.parameters())
          if only_trainable:
              parameters = [p for p in parameters if p.requires_grad]
          unique = {p.data_ptr(): p for p in parameters}.values()
          return sum(p.numel() for p in unique)

你可能感兴趣的:(python,pytorch,深度学习,python,stackoverflow)