- 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
m0_75133639
流体力学深度学习人工智能航空航天fluent流体力学材料科学CFD
基础模块流体力学方程求解1、不可压缩N-S方程数值解法(有限差分/有限元/伪谱法)·Fluent工业级应用:稳态/瞬态流、两相流仿真(圆柱绕流、入水问题)·Tecplot流场可视化与数据导出2、CFD数据的AI预处理·基于PCA/SVD的流场数据降维·特征值分解与时空特征提取深度学习核心3.物理机理嵌入的神经网络架构·物理信息神经网络(PINN):将N-S方程嵌入损失函数(JAX框架实现)·神经常
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- Python 用 NumPy 进行矩阵分解
Python用NumPy进行矩阵分解关键词:NumPy,矩阵分解,线性代数,奇异值分解,QR分解,LU分解,特征值分解摘要:本文将深入探讨使用NumPy进行矩阵分解的各种技术。我们将从基础的线性代数概念出发,详细讲解五种核心矩阵分解方法:LU分解、QR分解、奇异值分解(SVD)、特征值分解和Cholesky分解。每种方法都将配有数学原理说明、NumPy实现代码和实际应用案例。文章还将介绍矩阵分解在
- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 60天python训练营打卡day20
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY20奇异值SVD分解奇异值分解这个理论,对于你未来无论是做图像处理、信号处理、特征提取、推荐系统等都非常重要,所以需要单独抽出来说一下这个思想。—甚至我在非常多文章中都看到单独用它来做特征提取(伪造的很高大上),学会这个思想并不复杂没学过线代的不必在意,推导可以不掌握,关注输入输出即可。今天这期有点类似于帮助大家形成闭环—考研数学不是白考的知识
- Python 训练营打卡 Day 20-奇异值SVD分解
帮关下月亮
python训练营python算法开发语言
一.奇异值分解(SVD)的输入和输出输入:一个任意的矩阵A,尺寸为m×n(其中m是行数,n是列数,可以是矩形矩阵,不必是方阵)奇异值分解(SVD)得到的三个矩阵U、Σ和V^T各有其特定的意义和用途,下面我简要说明它们的作用:U(奇异值向量矩阵):是一个m×m的正交矩阵,列向量是矩阵AA^T的特征向量作用:表示原始矩阵A在行空间(样本空间)中的主方向或基向量。简单来说,U$的列向量描述了数据在行维度
- 疏锦行Python打卡 DAY 20 奇异值SVD分解
橘子夏与单车少年k
Python60天打卡训练营pythonnumpy开发语言
importnumpyasnp#创建一个矩阵A(5x3)A=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]])print("原始矩阵A:")print(A)#进行SVD分解U,sigma,Vt=np.linalg.svd(A,full_matrices=False)print("\n奇异值sigma:")print(sigma)#保留
- Python打卡训练营day20-奇异值SVD分解
sak77
python打卡训练营python机器学习奇异值分解SVD
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- MATLAB实现的基于SVD的数字图像水印技术
张锦云
本文还有配套的精品资源,点击获取简介:在数字图像处理中,SVD水印技术是一种有效的版权保护方法。它利用SVD算法在MATLAB环境下嵌入和提取水印,确保图像质量的同时隐藏信息。本文介绍了在MATLAB中实现SVD水印的步骤,包括图像预处理、SVD分解、水印嵌入、图像重构、水印提取和代码注释等关键环节。实践中涉及的技术点包括图像处理、SVD函数使用、数据编码策略、数值稳定性和图像质量评估。1.数字图
- Open3D(C++) Ransac拟合平面(详细过程版)
点云侠
Open3D学习c++平面算法计算机视觉
目录一、算法原理二、代码实现三、结果展示一、算法原理见:PCL使用RANSAC拟合平面二、代码实现#include#include#include//RANSAC拟合平面Eigen::Vector4d
- AI推荐系统演进史:从协同过滤到图神经网络与强化学习的融合
万米商云
人工智能神经网络深度学习
每一次滑动手机屏幕,电商平台向你推荐心仪商品的背后,是超过百亿量级的浮点运算。从早期的“猜你喜欢”到如今的“比你更懂你”,商品推荐引擎已悄然完成从简单规则到深度智能的技术跃迁。一、协同过滤:推荐系统的基石与演进协同过滤(CollaborativeFiltering)作为推荐系统的“古典方法”,其核心思想朴素却有力:相似的人喜欢相似的东西。早期的矩阵分解技术(如2009年的SVD算法)将用户-物品交
- OSQP求解器安装
Harvey1104
机器人osqp求解器优化
osqp-eigen依赖于osqp库,osqp依赖于eigen库,故建议的安装顺序如下:(1)eigen;(2)osqp;(3)osqp-eigeneigen库在ros安装时,系统已自动安装若先安装osqp-eigen会报错osqposqp是一种二次规划求解器,可用求解线性组合或二次规划问题,在同类问题中求解效率极高!osqp官网:https://osqp.org/,其C语言版本由oxford大学
- c++对imu的角速度积分得到表示旋转四元数
Feliz Da Vida
c++c++开发语言
xag::QuaterniondPredict(xag::Quaterniondorientation,Eigen::Vector3dgyro,doubledt){//获取四元数的四个分量doubleq0_=orientation.w();doubleq1_=orientation.x();doubleq2_=orientation.y();doubleq3_=orientation.z();do
- C++概率论算法详解:理论基础与实践应用
清言神力,创作奇迹。接受福利,做篇笔记。参考资料[0]概率论中均值、方差、标准差介绍及C++/OpenCV/Eigen的三种实现.https://blog.csdn.net/fengbingchun/article/details/73323475.[4]C++中的随机数及其在算法竞赛中的使用-博客园.https://www.cnblogs.com/cmy-blog/p/random.html.[
- 矩阵的奇异值(Singular Values)
幼儿园大哥~
扩展知识矩阵算法线性代数
矩阵的奇异值(SingularValues)是奇异值分解(SVD)过程中得到的一组重要特征值。它们在许多应用中非常重要,如信号处理、数据压缩和统计学等。以下是对奇异值及其计算和性质的详细解释:奇异值分解(SVD)奇异值分解是矩阵分解的一种方法,它将任意一个实数或复数矩阵分解为三个特定矩阵的乘积。具体来说,对于一个m×nm\timesnm×n的矩阵M\mathbf{M}M,其奇异值分解表示为:M=U
- 矩阵特征值和奇异值之间的关系
hxyzs
矩阵机器学习线性代数
矩阵的特征值和奇异值是线性代数中重要的概念,它们之间存在一定的关系。对于一个方阵,其特征值是该矩阵在空间中的特殊向量方向上的缩放因子。特征值可以通过解矩阵的特征值问题得到,即找到满足方程Ax=λx的非零向量x和标量λ。而对于一个非方阵的矩阵,它的奇异值则是矩阵的秩和特征向量的相对缩放因子。奇异值分解(SVD)可以将矩阵分解为三个部分:U、Σ和V^T,其中U和V是正交矩阵,Σ是一个对角矩阵,对角线上
- cortex-debug怎么提取添加.svd文件进行外设查看
c++小白,瞎写博客
vscode单片机
找到厂家提供的keil的pack包,改后缀成zip以压缩文件打开,把svd文件移出来,添加"svdFile"项
- 共现矩阵的SVD降维与低维词向量计算详解
幽·
NLP与机器学习矩阵线性代数
共现矩阵的SVD降维与低维词向量计算详解1.原始共现矩阵构建根据用户提供的共现对:句子1:(I,like),(like,apples)句子2:(I,like),(like,bananas)词汇表:[I,like,apples,bananas]窗口大小=2(假设共现对直接作为矩阵的非零元素),共现矩阵(M)如下(忽略单词自身的共现,即对角线为0):IlikeapplesbananasI0200lik
- 深入详解矩阵分解(SVD在推荐系统中的应用)
猿享天开
人工智能数学基础专讲矩阵线性代数
深入详解矩阵分解(SVD在推荐系统中的应用)矩阵分解是数据科学、机器学习和人工智能中的核心技术之一,尤其在推荐系统中展现出强大的应用潜力。本文将从基础数学概念开始,逐步深入到奇异值分解(SVD)的理论、计算过程、在推荐系统中的具体应用,并扩展到矩阵分解在人工智能其他领域的应用。通过详细的解释和具体的实例,帮助初学者全面掌握和理解矩阵分解的原理和应用。一、矩阵基础知识1.1什么是矩阵?矩阵是一个按照
- Eigen 库实现最小二乘算法(Least Squares)
点云SLAM
算法算法Eigen数据工具库最小二乘算法SVD分解QR分解超定方程高斯-牛顿法
一、最小二乘法基本原理给定一个超定方程组Ax=bAx=bAx=b,当A∈Rm×n,m>nA\in\mathbb{R}^{m\timesn},m>nA∈Rm×n,m>n时,一般无法精确解出xxx。因此我们寻找一个使残差∥Ax−b∥22\|Ax-b\|_2^2∥Ax−b∥22最小的解。其解析解为:x=(ATA)−1ATbx=(A^TA)^{-1}A^Tbx=(ATA)−1ATb或者使用更稳定的方式:Q
- Diffusers代码学习:Stable Video Diffusion
duhaining1976
AIGC
稳定视频扩散(SVD)是一种强大的图像到视频生成模型,可以根据输入图像生成2-4秒的高分辨率(576x1024)视频。有此模型的两个变体,SVD和SVD-XT。SVDCheckpoint被训练以生成14帧视频,并且SVD-XTCheckpoint点被进一步微调以生成25帧视频。下面将在本指南中使用SVD-XTCheckpoint。importosos.environ["HF_ENDPOINT"]=
- 深入详解线性代数基础知识:理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA)在人工智能中的应用
猿享天开
人工智能数学基础专讲线性代数人工智能矩阵特征向量
深入详解线性代数基础知识在人工智能中的应用线性代数是人工智能,尤其是机器学习和深度学习领域的基石。深入理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA),对于数据降维、特征提取和模型优化至关重要。本文将详细探讨这些线性代数的核心概念及其在人工智能中的应用,并辅以示例代码以助理解。1.矩阵与向量运算线性代数中的矩阵与向量运算是理解高维数据处理和模型训练的基
- Eigen矩阵存储顺序以及转换
byxdaz
Eigen矩阵线性代数
一、Eigen矩阵存储顺序在矩阵运算和线性代数中,"行优先"(Row-major)和"列优先"(Column-major)是两种不同的存储方式,它们决定了多维数组(如矩阵)在内存中的布局顺序。1.行优先(Row-major)定义:矩阵按行顺序存储在内存中,即第一行的所有元素连续存储,接着是第二行,依此类推。内存布局示例:对于一个2x3矩阵:行优先存储顺序为:a,b,c,d,e,f。2.列优先(Co
- 深度学习与传统算法在人脸识别领域的演进:从Eigenfaces到ArcFace
uncle_ll
人脸深度学习人脸人脸识别
一、传统人脸识别方法的发展与局限1.1Eigenfaces:主成分分析的经典实践算法原理Eigenfaces是基于主成分分析(PCA)的里程碑式方法。其核心思想是将人脸图像视为高维向量,通过协方差矩阵计算特征向量(即特征脸),将原始数据投影到由前k个最大特征值对应的特征向量张成的低维子空间。在FERET数据集上,Eigenfaces曾达到85%的识别准确率,证明了线性降维的有效性。优劣势对比✅优势
- 如何深入学习MATLAB的高级应用?
tyatyatya
MATLAB教程学习matlab开发语言
文章目录要深入学习MATLAB的高级应用,需要在掌握基础语法后,系统性地学习特定领域的工具箱和算法,并通过实战项目提升能力。以下是分阶段的学习路径和资源推荐:一、深化核心技能高级矩阵运算与线性代数matlab%稀疏矩阵处理A=sparse([100;020;003]);%创建稀疏矩阵spy(A);%可视化稀疏结构%特征值分解与SVD[V,D]=eig(A);%特征值分解[U,S,V]=svd(A)
- 【图像处理基石】如何入门AI计算机视觉?
AndrewHZ
图像处理基石人工智能图像处理计算机视觉深度学习AIPyTorch
入门AI计算机视觉需要从基础理论、工具方法和实战项目三个维度逐步推进,以下是系统化的学习路径和建议:一、夯实基础:核心知识储备1.数学基础(必备)线性代数:矩阵运算、特征值分解、奇异值分解(SVD)——理解神经网络中的线性变换。概率论与统计:概率分布、贝叶斯定理、假设检验——支撑模型训练中的不确定性分析。微积分:导数、梯度、链式法则——深度学习优化(如反向传播)的核心。推荐资源:教材:《线性代数及
- 技术剖析|线性代数之特征值分解,支撑AI算法的数学原理
AI算力那些事儿
技术剖析线性代数人工智能算法
目录一、特征值分解的数学本质1、基本定义与核心方程2、几何解释与线性变换3、可对角化条件与分解形式二、特征值分解的计算方法1、特征多项式与代数解法2、数值计算方法3、计算实例与验证三、特征值分解在AI中的关键应用1、主成分分析(PCA)与数据降维2、图分析与网络科学3、矩阵分析与优化问题4、图像处理与信号分析四、特征值分解的扩展与相关技术1、奇异值分解(SVD)的关联2、广义特征值问题3、现代算法
- day 20
lcccyyy1
60天计划python
利用SVD奇异值分解进行降维奇异值分解(SVD)将原始矩阵A分解为A=UΣVᵀ,可完全重构A且无信息损失。实际应用中,常筛选排序靠前的奇异值及对应向量实现降维或数据压缩:1.排序特性:Σ矩阵对角线上奇异值降序排列,大值代表主要信息,小值代表次要信息或噪声,其大小反映对A的贡献程度。2.筛选规则:选前k个奇异值(k小于矩阵秩),常见规则有固定数量、累计方差贡献率达阈值、按奇异值下降“拐点”截断。3.
- SVD奇异值分解
zx43
python训练营打卡内容机器学习人工智能python笔记
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- 2024 AI 人工智能完整学习路线表
AI天才研究院
人工智能学习
十六大阶段概述阶段阶段名称实战项目收益第一阶段python基础与科学计算模块√泰坦尼克号数据分析案例√可视化剖析逻辑回归损失函数案例算法先行,技术随后。学习人工智能领域基础知识熟练掌握,打好坚实的内功基础。第二阶段AI数学知识√梯度下降和牛顿法推导√SVD奇异值分解应用第三阶段线性回归算法√代码实现梯度下降求解多元线性回归√保险花销预测案例第四阶段线性分类算法√分类鸢尾花数据集√音乐曲风分类√SV
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理